Model predictive control for max-min-plus-scaling systems - efficient implementation

B. de Schutter, T. van den Boom
{"title":"Model predictive control for max-min-plus-scaling systems - efficient implementation","authors":"B. de Schutter, T. van den Boom","doi":"10.1109/WODES.2002.1167709","DOIUrl":null,"url":null,"abstract":"In previous work we have introduced model predictive control (MPC) for max-plus-linear and max-min-plus(-scaling) discrete-event systems. For max-plus-linear systems there are efficient algorithms to solve the corresponding MPC optimization problems. However, previously, for max-min-plus(-scaling) systems the only approach was to consider a limited subclass of decoupled max-min-plus systems or to use nonlinear nonconvex optimization algorithms, which are not efficient if the size of the system or the MPC optimization problem is large. In this paper we present a more efficient approach that is based on canonical forms for max-min-plus-scaling functions and in which the MPC optimization problem is reduced to a set of linear programming problems.","PeriodicalId":435263,"journal":{"name":"Sixth International Workshop on Discrete Event Systems, 2002. Proceedings.","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sixth International Workshop on Discrete Event Systems, 2002. Proceedings.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WODES.2002.1167709","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

In previous work we have introduced model predictive control (MPC) for max-plus-linear and max-min-plus(-scaling) discrete-event systems. For max-plus-linear systems there are efficient algorithms to solve the corresponding MPC optimization problems. However, previously, for max-min-plus(-scaling) systems the only approach was to consider a limited subclass of decoupled max-min-plus systems or to use nonlinear nonconvex optimization algorithms, which are not efficient if the size of the system or the MPC optimization problem is large. In this paper we present a more efficient approach that is based on canonical forms for max-min-plus-scaling functions and in which the MPC optimization problem is reduced to a set of linear programming problems.
最大-最小-加尺度系统的模型预测控制——高效实现
在以前的工作中,我们介绍了模型预测控制(MPC)的最大加线性和最大最小加(缩放)离散事件系统。对于极大加线性系统,存在求解相应MPC优化问题的有效算法。然而,以前,对于max-min-plus(缩放)系统,唯一的方法是考虑解耦的max-min-plus系统的有限子类或使用非线性非凸优化算法,如果系统的规模或MPC优化问题很大,则这些算法效率不高。在本文中,我们提出了一种更有效的方法,该方法基于最大-最小-加缩放函数的规范形式,并将MPC优化问题简化为一组线性规划问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信