A Comparative Study of Deep Convolutional Neural Networks for Car Image Classification

Phuriwat Rasameekunwit, Wutthichai Puangmanee
{"title":"A Comparative Study of Deep Convolutional Neural Networks for Car Image Classification","authors":"Phuriwat Rasameekunwit, Wutthichai Puangmanee","doi":"10.1109/RI2C56397.2022.9910270","DOIUrl":null,"url":null,"abstract":"This paper aims to present the result of a comparative study of Deep Convolutional Neural Networks (CNN) using the AlexNet architecture to use the car image classification of a small dataset. We have proposed the experiment result from a comparative study dropout value using Cuckoo Search (CS), of the optimization techniques for a small data set solving problem of overfitting. The car images for the experiment are different in color, size, and position. As a result, the training time average of $\\sim 59.16$ minutes, and the model accuracy of 91.41%.","PeriodicalId":403083,"journal":{"name":"2022 Research, Invention, and Innovation Congress: Innovative Electricals and Electronics (RI2C)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 Research, Invention, and Innovation Congress: Innovative Electricals and Electronics (RI2C)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RI2C56397.2022.9910270","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper aims to present the result of a comparative study of Deep Convolutional Neural Networks (CNN) using the AlexNet architecture to use the car image classification of a small dataset. We have proposed the experiment result from a comparative study dropout value using Cuckoo Search (CS), of the optimization techniques for a small data set solving problem of overfitting. The car images for the experiment are different in color, size, and position. As a result, the training time average of $\sim 59.16$ minutes, and the model accuracy of 91.41%.
深度卷积神经网络在汽车图像分类中的比较研究
本文旨在介绍使用AlexNet架构的深度卷积神经网络(CNN)使用小数据集的汽车图像分类的比较研究结果。我们利用布谷鸟搜索(Cuckoo Search, CS)对小数据集的过拟合问题的优化技术进行了dropout值的比较研究,并提出了实验结果。实验中的汽车图像在颜色、大小和位置上都是不同的。结果,训练时间平均为59.16美元分钟,模型准确率为91.41%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信