Drug2Vec: Knowledge-aware Feature-driven Method for Drug Representation Learning

Ying Shen, Kaiqi Yuan, Yaliang Li, Buzhou Tang, Min Yang, Nan Du, Kai Lei
{"title":"Drug2Vec: Knowledge-aware Feature-driven Method for Drug Representation Learning","authors":"Ying Shen, Kaiqi Yuan, Yaliang Li, Buzhou Tang, Min Yang, Nan Du, Kai Lei","doi":"10.1109/BIBM.2018.8621390","DOIUrl":null,"url":null,"abstract":"Proper representations of drugs have broad applications in healthcare analytics, such as drug-drug interaction (DDI) prediction and drug-drug similarity (DDS) computation. However, drug application involves accurate drug representation and rich annotated data, requiring tremendous expert time and effort. Thereby, drug feature sparseness creates a substantial barrier for drug representation learning, making it difficult to accurately identify new drug properties prior to public release. To alleviate these deficiencies, we propose a knowledge-aware feature-driven method (Drug2Vec) for exploring the interaction between two drugs. The method of Drug2Vec captures the medical information, taxonomy information and semantic information of drugs. The results of experiments demonstrate that compared with existing methods, Drug2Vec can effectively learn the drug representation and discover accurate drug-drug interaction.","PeriodicalId":108667,"journal":{"name":"2018 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIBM.2018.8621390","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

Proper representations of drugs have broad applications in healthcare analytics, such as drug-drug interaction (DDI) prediction and drug-drug similarity (DDS) computation. However, drug application involves accurate drug representation and rich annotated data, requiring tremendous expert time and effort. Thereby, drug feature sparseness creates a substantial barrier for drug representation learning, making it difficult to accurately identify new drug properties prior to public release. To alleviate these deficiencies, we propose a knowledge-aware feature-driven method (Drug2Vec) for exploring the interaction between two drugs. The method of Drug2Vec captures the medical information, taxonomy information and semantic information of drugs. The results of experiments demonstrate that compared with existing methods, Drug2Vec can effectively learn the drug representation and discover accurate drug-drug interaction.
Drug2Vec:知识感知特征驱动的药物表示学习方法
药物的适当表示在医疗保健分析中有广泛的应用,例如药物-药物相互作用(DDI)预测和药物-药物相似度(DDS)计算。然而,药物应用涉及准确的药物表示和丰富的注释数据,需要大量的专家时间和精力。因此,药物特征稀疏性为药物表征学习创造了实质性障碍,使得在公开发布之前难以准确识别新药特性。为了缓解这些缺陷,我们提出了一种知识感知特征驱动方法(Drug2Vec)来探索两种药物之间的相互作用。drug - 2vec方法捕获药物的医学信息、分类信息和语义信息。实验结果表明,与现有方法相比,Drug2Vec可以有效地学习药物表征,准确地发现药物-药物相互作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信