Online learning with kernels: Overcoming the growing sum problem

Abhishek Singh, N. Ahuja, P. Moulin
{"title":"Online learning with kernels: Overcoming the growing sum problem","authors":"Abhishek Singh, N. Ahuja, P. Moulin","doi":"10.1109/MLSP.2012.6349811","DOIUrl":null,"url":null,"abstract":"Online kernel algorithms have an important computational drawback. The computational complexity of these algorithms grow linearly over time. This makes these algorithms difficult to use for real time signal processing applications that need to continuously process data over prolonged periods of time. In this paper, we present a way of overcoming this problem. We do so by approximating kernel evaluations using finite dimensional inner products in a randomized feature space. We apply this idea to the Kernel Least Mean Square (KLMS) algorithm, that has recently been proposed as a non-linear extension to the famed LMS algorithm. Our simulations show that using the proposed method, constant computational complexity can be achieved, with no observable loss in performance.","PeriodicalId":262601,"journal":{"name":"2012 IEEE International Workshop on Machine Learning for Signal Processing","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"47","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE International Workshop on Machine Learning for Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MLSP.2012.6349811","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 47

Abstract

Online kernel algorithms have an important computational drawback. The computational complexity of these algorithms grow linearly over time. This makes these algorithms difficult to use for real time signal processing applications that need to continuously process data over prolonged periods of time. In this paper, we present a way of overcoming this problem. We do so by approximating kernel evaluations using finite dimensional inner products in a randomized feature space. We apply this idea to the Kernel Least Mean Square (KLMS) algorithm, that has recently been proposed as a non-linear extension to the famed LMS algorithm. Our simulations show that using the proposed method, constant computational complexity can be achieved, with no observable loss in performance.
基于核函数的在线学习:克服增长和问题
在线核算法有一个重要的计算缺陷。这些算法的计算复杂度随时间呈线性增长。这使得这些算法难以用于需要长时间连续处理数据的实时信号处理应用程序。在本文中,我们提出了一种克服这个问题的方法。我们通过在随机特征空间中使用有限维内积近似核计算来实现。我们将这一思想应用于核最小均方(KLMS)算法,该算法最近被提出作为著名的LMS算法的非线性扩展。我们的仿真表明,使用该方法可以实现恒定的计算复杂度,而没有明显的性能损失。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信