Evaluating Machine Learning Models for Android Malware Detection: A Comparison Study

M. Rana, Charan Gudla, A. Sung
{"title":"Evaluating Machine Learning Models for Android Malware Detection: A Comparison Study","authors":"M. Rana, Charan Gudla, A. Sung","doi":"10.1145/3301326.3301390","DOIUrl":null,"url":null,"abstract":"Android is the most popular mobile operating system having billions of active users worldwide that attracted advertisers, hackers, and cybercriminals to develop malware for various purposes. In recent years, wide-ranging researches have been conducted on malware analysis and detection for Android devices while Android has also implemented various security controls to deal with the malware problems, including unique user ID (UID) for each application, system permissions, and its distribution platform Google Play. In this paper, we optimize and evaluate different types of machine learning algorithms by implementing a classifier based on static analysis in order to detect malware in applications running on the Android OS. In our evaluation, we use 11,120 applications with 5,560 malware samples and 5,560 benign samples of the DREBIN dataset, and the accuracy we achieved is higher than 94%; therefore, the study has demonstrated the effectiveness of using machine learning classifiers for detecting Android malware.","PeriodicalId":294040,"journal":{"name":"Proceedings of the 2018 VII International Conference on Network, Communication and Computing","volume":"378 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2018 VII International Conference on Network, Communication and Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3301326.3301390","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

Abstract

Android is the most popular mobile operating system having billions of active users worldwide that attracted advertisers, hackers, and cybercriminals to develop malware for various purposes. In recent years, wide-ranging researches have been conducted on malware analysis and detection for Android devices while Android has also implemented various security controls to deal with the malware problems, including unique user ID (UID) for each application, system permissions, and its distribution platform Google Play. In this paper, we optimize and evaluate different types of machine learning algorithms by implementing a classifier based on static analysis in order to detect malware in applications running on the Android OS. In our evaluation, we use 11,120 applications with 5,560 malware samples and 5,560 benign samples of the DREBIN dataset, and the accuracy we achieved is higher than 94%; therefore, the study has demonstrated the effectiveness of using machine learning classifiers for detecting Android malware.
评估Android恶意软件检测的机器学习模型:一项比较研究
Android是最受欢迎的移动操作系统,在全球拥有数十亿活跃用户,吸引了广告商、黑客和网络罪犯为各种目的开发恶意软件。近年来,人们对Android设备的恶意软件分析和检测进行了广泛的研究,而Android也实施了各种安全控制来处理恶意软件问题,包括每个应用程序的唯一用户ID (UID)、系统权限以及其分发平台Google Play。在本文中,我们通过实现基于静态分析的分类器来优化和评估不同类型的机器学习算法,以便检测在Android操作系统上运行的应用程序中的恶意软件。在我们的评估中,我们使用了11120个应用程序,其中包含5560个恶意软件样本和5560个DREBIN数据集的良性样本,我们实现的准确率高于94%;因此,该研究证明了使用机器学习分类器检测Android恶意软件的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信