Do Long Aorta Branches Impact on the Rheological Properties?

M. Al-Rawi, A. Al-Jumaily, D. Belkacemi
{"title":"Do Long Aorta Branches Impact on the Rheological Properties?","authors":"M. Al-Rawi, A. Al-Jumaily, D. Belkacemi","doi":"10.1115/imece2021-70565","DOIUrl":null,"url":null,"abstract":"\n Current studies dispute the effect of the aorta geometry and branches on how the hemodynamics parameters develop along the branches in 3D models. In constructing and modelling the aorta geometry, it is necessary to incorporate the different lengths of the bifurcation and branches. Previous studies modelled the aorta with simplified assumptions (idealized model) which gave rise to some differences between the model and clinical outcomes. However, these differences are minimal, and the results can still be validated against clinical trials. The Computational Fluid Dynamics (CFD) methods can also accurately simulate the stresses affecting the artery wall and the dynamic behavior of the blood flow in its pulsatile form. Therefore, the outputs from CFD analysis can be used to reduce the risk of disease complications and enable a better understanding of the effects of hemodynamic stresses. A comparison of the behavior of the Time-Average Wall Shear Stress (TAWSS), Oscillatory Shear Index (OSI), and Relative Residence Time (RRT) against two lengths of bifurcations and in the presence of Non-Newtonian Power Law blood flow properties is presented in this work. This study investigates the cardiac cycle transient analysis using the Laminar inviscid flow in FLUENT, ANSYS 2020R2. The results are promising and give ample support for further development of new diagnostic tools based on the relationship between the Wall Shear Stress (WSS) derivatives: TAWSS and the OSI and the branches lengths.","PeriodicalId":314012,"journal":{"name":"Volume 5: Biomedical and Biotechnology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 5: Biomedical and Biotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/imece2021-70565","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Current studies dispute the effect of the aorta geometry and branches on how the hemodynamics parameters develop along the branches in 3D models. In constructing and modelling the aorta geometry, it is necessary to incorporate the different lengths of the bifurcation and branches. Previous studies modelled the aorta with simplified assumptions (idealized model) which gave rise to some differences between the model and clinical outcomes. However, these differences are minimal, and the results can still be validated against clinical trials. The Computational Fluid Dynamics (CFD) methods can also accurately simulate the stresses affecting the artery wall and the dynamic behavior of the blood flow in its pulsatile form. Therefore, the outputs from CFD analysis can be used to reduce the risk of disease complications and enable a better understanding of the effects of hemodynamic stresses. A comparison of the behavior of the Time-Average Wall Shear Stress (TAWSS), Oscillatory Shear Index (OSI), and Relative Residence Time (RRT) against two lengths of bifurcations and in the presence of Non-Newtonian Power Law blood flow properties is presented in this work. This study investigates the cardiac cycle transient analysis using the Laminar inviscid flow in FLUENT, ANSYS 2020R2. The results are promising and give ample support for further development of new diagnostic tools based on the relationship between the Wall Shear Stress (WSS) derivatives: TAWSS and the OSI and the branches lengths.
长主动脉分支对流变学特性有影响吗?
目前的研究对三维模型中主动脉几何形状和分支对血流动力学参数沿分支发展的影响存在争议。在构造和建模主动脉几何,有必要纳入不同长度的分支和分支。以往的研究采用简化的假设(理想模型)对主动脉进行建模,导致模型与临床结果存在一定差异。然而,这些差异很小,结果仍然可以通过临床试验来验证。计算流体动力学(CFD)方法还可以精确模拟影响动脉壁的应力和脉动形式的血流动态行为。因此,CFD分析的结果可用于降低疾病并发症的风险,并能够更好地了解血流动力学应力的影响。本文比较了时间平均壁剪切应力(TAWSS)、振荡剪切指数(OSI)和相对停留时间(RRT)对两种分叉长度和非牛顿幂律血流特性的影响。本研究利用FLUENT、ANSYS 2020R2软件中的层流无粘流对心脏周期进行瞬态分析。这一结果是有希望的,并为进一步开发基于壁面剪切应力(WSS)衍生物:TAWSS和OSI与分支长度之间关系的新诊断工具提供了充分的支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信