Combining multiple visual cognition systems for joint decision-making using combinatorial fusion

Cameron McMunn-Coffran, Elena Paolercio, Yu-lian Fei, D. Hsu
{"title":"Combining multiple visual cognition systems for joint decision-making using combinatorial fusion","authors":"Cameron McMunn-Coffran, Elena Paolercio, Yu-lian Fei, D. Hsu","doi":"10.1109/ICCI-CC.2012.6311167","DOIUrl":null,"url":null,"abstract":"Cognitive decision-making based on visual sensory input has been a topic of intensive interest. When combining these visual cognition systems, three models of strategy have been proposed and widely used: M<sub>1</sub>: simple average, M<sub>2</sub>: weighted average using σ, and M<sub>3</sub>: weighted average using σ<sup>2</sup>. In this paper, we extend each visual cognition system to a scoring system using combinatorial fusion analysis, a framework which has proven effective for the optimization of multiple evaluation methods in several other computational domains. Ten experiments on two visual systems each are conducted. M<sub>1</sub>, M<sub>2</sub>, M<sub>3</sub>, and combinatorial fusion on M<sub>1</sub> are computed. Our two main results are: (a) Six of the ten experiments show performance order M<sub>1</sub> >; M<sub>2</sub> >; M<sub>3</sub> while the other four experiments exhibit the opposite order; (b) Combinatorial fusion based on M<sub>1</sub> performs better than M<sub>1</sub> in eight of the ten experiments. It is demonstrated that Combinatorial Fusion Analysis is useful in the study of visual cognition. Our results exhibit a new method to better analyze and make joint decisions in visual cognition using Combinatorial Fusion Analysis.","PeriodicalId":427778,"journal":{"name":"2012 IEEE 11th International Conference on Cognitive Informatics and Cognitive Computing","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE 11th International Conference on Cognitive Informatics and Cognitive Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCI-CC.2012.6311167","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Cognitive decision-making based on visual sensory input has been a topic of intensive interest. When combining these visual cognition systems, three models of strategy have been proposed and widely used: M1: simple average, M2: weighted average using σ, and M3: weighted average using σ2. In this paper, we extend each visual cognition system to a scoring system using combinatorial fusion analysis, a framework which has proven effective for the optimization of multiple evaluation methods in several other computational domains. Ten experiments on two visual systems each are conducted. M1, M2, M3, and combinatorial fusion on M1 are computed. Our two main results are: (a) Six of the ten experiments show performance order M1 >; M2 >; M3 while the other four experiments exhibit the opposite order; (b) Combinatorial fusion based on M1 performs better than M1 in eight of the ten experiments. It is demonstrated that Combinatorial Fusion Analysis is useful in the study of visual cognition. Our results exhibit a new method to better analyze and make joint decisions in visual cognition using Combinatorial Fusion Analysis.
基于组合融合的多视觉认知系统联合决策
基于视觉感官输入的认知决策一直是一个备受关注的话题。将这些视觉认知系统结合起来,提出并广泛应用了三种策略模型:M1:简单平均,M2:使用σ的加权平均,M3:使用σ2的加权平均。在本文中,我们使用组合融合分析将每个视觉认知系统扩展到一个评分系统,该框架已被证明对其他计算领域的多种评估方法的优化是有效的。在两种视觉系统上分别进行了10次实验。计算M1、M2、M3以及M1上的组合融合。我们的两个主要结果是:(a) 10个实验中有6个实验的性能顺序为M1 >;M2 >;M3,而其他四个实验表现出相反的顺序;(b)在10次实验中,有8次基于M1的组合融合优于M1。结果表明,组合融合分析在视觉认知的研究中是有用的。我们的研究结果展示了一种利用组合融合分析更好地分析和做出视觉认知联合决策的新方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信