Псевдовипадкові криптостійкі послідовності і подільність точки скрученої кривої Едвардса навпіл над простими і складеними полями

Руслан Вячеславович Скуратовский
{"title":"Псевдовипадкові криптостійкі послідовності і подільність точки скрученої кривої Едвардса навпіл над простими і складеними полями","authors":"Руслан Вячеславович Скуратовский","doi":"10.18372/2410-7840.20.13101","DOIUrl":null,"url":null,"abstract":"Estimates of the complexity of the point division operation into two for twisted Edwards curve are obtained in comparison with the doubling of the point. One of the applications of the divisibility properties of a point into two is considered to determine the order of a point in a cryptosystem. The cryptological security of the pseudo-random sequence generator proposed by the author is shown on the basis of a curve in the form of Edwards. A new generation scheme and a new one-sided function of a pseudo-random cryptological security sequence based on these curves are proposed. The degree of embedding of these curves into a finite field for pairing on friendly elliptic curves of prime order or almost prime order is investigated. Pairingfriendly curves of prime or near-prime order are absolutely essential in certain pairing-based schemes like short signatures with longer useful life. For this goal we construct friendly curves on base of family of twisted Edwards curves. The possibility of constructing a twisted Edwards order curve, that is, one that has a minimal cofactor 4, has been found. A solution for the inverse doubling problem is obtained for quasi-elliptic curves that represented in the twisted Edwards form. Also its application to the proving of cryptographic pseudo-random sequence generator. It makes it possible to prove the cryptological security of the pseudo-random sequence we developed.","PeriodicalId":378015,"journal":{"name":"Ukrainian Information Security Research Journal","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ukrainian Information Security Research Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18372/2410-7840.20.13101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Estimates of the complexity of the point division operation into two for twisted Edwards curve are obtained in comparison with the doubling of the point. One of the applications of the divisibility properties of a point into two is considered to determine the order of a point in a cryptosystem. The cryptological security of the pseudo-random sequence generator proposed by the author is shown on the basis of a curve in the form of Edwards. A new generation scheme and a new one-sided function of a pseudo-random cryptological security sequence based on these curves are proposed. The degree of embedding of these curves into a finite field for pairing on friendly elliptic curves of prime order or almost prime order is investigated. Pairingfriendly curves of prime or near-prime order are absolutely essential in certain pairing-based schemes like short signatures with longer useful life. For this goal we construct friendly curves on base of family of twisted Edwards curves. The possibility of constructing a twisted Edwards order curve, that is, one that has a minimal cofactor 4, has been found. A solution for the inverse doubling problem is obtained for quasi-elliptic curves that represented in the twisted Edwards form. Also its application to the proving of cryptographic pseudo-random sequence generator. It makes it possible to prove the cryptological security of the pseudo-random sequence we developed.
通过与点的加倍运算的比较,得到了扭曲Edwards曲线分两点运算的复杂度估计。一个点的可整除性质的一个应用被认为是确定一个点的顺序在一个密码系统。作者提出的伪随机序列发生器的密码学安全性用爱德华兹曲线表示。基于这些曲线,提出了伪随机密码安全序列的新的生成方案和新的单侧函数。研究了这些曲线在素数阶或近素数阶友好椭圆曲线上的嵌入程度。在某些基于配对的方案中,如具有较长使用寿命的短签名,素数或近素数阶的配对友好曲线是绝对必要的。为此,我们在扭曲爱德华兹曲线族的基础上构造友好曲线。我们发现了构造一个扭曲的爱德华兹阶曲线的可能性,即具有最小余数4的曲线。得到了以扭曲爱德华兹形式表示的拟椭圆曲线的逆加倍问题的一个解。并将其应用于密码伪随机序列生成器的证明。这使得证明伪随机序列的密码学安全性成为可能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信