H. Krishnan, J. Kent, J. Dowell, Adam P Bearsdley, J. Bowman, G. Taylor, Nithyanandhan Thyagarajan, D. Jacobs
{"title":"Development of an Optimized Real-Time Radio Transient Imager for LWA-SV","authors":"H. Krishnan, J. Kent, J. Dowell, Adam P Bearsdley, J. Bowman, G. Taylor, Nithyanandhan Thyagarajan, D. Jacobs","doi":"10.23919/USNC/URSI49741.2020.9321611","DOIUrl":null,"url":null,"abstract":"In this paper, we describe our efforts towards the development of a real-time radio imaging correlator for the Long-Wavelength Array station in Sevilleta, New Mexico. We briefly discuss the direct-imaging algorithm and present the architecture of the GPU implementation. We describe the code-level modifications carried out for one of the modules in the algorithm that improves GPU-memory management and highlight the performance improvements achieved through it. We emphasize our ongoing efforts in tuning the overall run-time duration of the correlator which in turn is expected to increase the operating bandwidth in order to address the demands of wide-band capability for radio transient science.","PeriodicalId":443426,"journal":{"name":"2020 IEEE USNC-CNC-URSI North American Radio Science Meeting (Joint with AP-S Symposium)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE USNC-CNC-URSI North American Radio Science Meeting (Joint with AP-S Symposium)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/USNC/URSI49741.2020.9321611","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we describe our efforts towards the development of a real-time radio imaging correlator for the Long-Wavelength Array station in Sevilleta, New Mexico. We briefly discuss the direct-imaging algorithm and present the architecture of the GPU implementation. We describe the code-level modifications carried out for one of the modules in the algorithm that improves GPU-memory management and highlight the performance improvements achieved through it. We emphasize our ongoing efforts in tuning the overall run-time duration of the correlator which in turn is expected to increase the operating bandwidth in order to address the demands of wide-band capability for radio transient science.