A K-Nearest Neighbours Approach To Unsupervised Spoken Term Discovery

Alexis Thual, Corentin Dancette, Julien Karadayi, Juan Benjumea, Emmanuel Dupoux
{"title":"A K-Nearest Neighbours Approach To Unsupervised Spoken Term Discovery","authors":"Alexis Thual, Corentin Dancette, Julien Karadayi, Juan Benjumea, Emmanuel Dupoux","doi":"10.1109/SLT.2018.8639515","DOIUrl":null,"url":null,"abstract":"Unsupervised spoken term discovery is the task of finding recurrent acoustic patterns in speech without any annotations. Current approaches consists of two steps: (1) discovering similar patterns in speech, and (2) partitioning those pairs of acoustic tokens using graph clustering methods. We propose a new approach for the first step. Previous systems used various approximation algorithms to make the search tractable on large amounts of data. Our approach is based on an optimized k-nearest neighbours (KNN) search coupled with a fixed word embedding algorithm. The results show that the KNN algorithm is robust across languages, consistently-performs the DTW-based baseline, and is competitive with current state-of-the-art spoken term discovery systems.","PeriodicalId":377307,"journal":{"name":"2018 IEEE Spoken Language Technology Workshop (SLT)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Spoken Language Technology Workshop (SLT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SLT.2018.8639515","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

Unsupervised spoken term discovery is the task of finding recurrent acoustic patterns in speech without any annotations. Current approaches consists of two steps: (1) discovering similar patterns in speech, and (2) partitioning those pairs of acoustic tokens using graph clustering methods. We propose a new approach for the first step. Previous systems used various approximation algorithms to make the search tractable on large amounts of data. Our approach is based on an optimized k-nearest neighbours (KNN) search coupled with a fixed word embedding algorithm. The results show that the KNN algorithm is robust across languages, consistently-performs the DTW-based baseline, and is competitive with current state-of-the-art spoken term discovery systems.
无监督口语词汇发现的k近邻方法
无监督语音术语发现是在没有任何注释的情况下发现语音中反复出现的声学模式的任务。目前的方法包括两个步骤:(1)发现语音中的相似模式;(2)使用图聚类方法对这些声学标记对进行划分。我们提出了第一步的新方法。以前的系统使用各种近似算法使搜索在大量数据上易于处理。我们的方法是基于优化的k近邻(KNN)搜索和固定词嵌入算法。结果表明,KNN算法具有跨语言的鲁棒性,一致地执行基于dtw的基线,并且与当前最先进的口语术语发现系统相竞争。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信