{"title":"Properties of the input pattern fault model","authors":"R. D. Blanton, John P. Hayes","doi":"10.1109/ICCD.1997.628897","DOIUrl":null,"url":null,"abstract":"Recent work in IC failure analysis strongly indicates the need for fault models that directly analyze the function of circuit primitives. The input pattern (IP) fault model is a functional fault model that allows for both complete and partial functional verification of every circuit module, independent of the design level. We describe the IP fault model and provide a method for analyzing IP faults using standard SSL-based fault simulators and test generation tools. The method is used to generate test sets that target the IP faults of the ISCAS85 benchmark circuits and a carry-lookahead adder. Improved IP fault coverage for the benchmarks and the adder is obtained by adding a small number of test patterns to tests that target only SSL faults. We also conducted fault simulation experiments that show IP test patterns are effective in detecting non-targeted faults such as bridging and transistor stuck-on faults. Finally, we discuss the notion of IP redundancy and show how large amounts of this redundancy exist in the benchmarks and in SSL-irredundant adder circuits.","PeriodicalId":154864,"journal":{"name":"Proceedings International Conference on Computer Design VLSI in Computers and Processors","volume":"64 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1997-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"76","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings International Conference on Computer Design VLSI in Computers and Processors","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCD.1997.628897","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 76
Abstract
Recent work in IC failure analysis strongly indicates the need for fault models that directly analyze the function of circuit primitives. The input pattern (IP) fault model is a functional fault model that allows for both complete and partial functional verification of every circuit module, independent of the design level. We describe the IP fault model and provide a method for analyzing IP faults using standard SSL-based fault simulators and test generation tools. The method is used to generate test sets that target the IP faults of the ISCAS85 benchmark circuits and a carry-lookahead adder. Improved IP fault coverage for the benchmarks and the adder is obtained by adding a small number of test patterns to tests that target only SSL faults. We also conducted fault simulation experiments that show IP test patterns are effective in detecting non-targeted faults such as bridging and transistor stuck-on faults. Finally, we discuss the notion of IP redundancy and show how large amounts of this redundancy exist in the benchmarks and in SSL-irredundant adder circuits.