F. Doshi-Velez, E. Brunskill, Alexander C. Shkolnik, T. Kollar, Khashayar Rohanimanesh, Russ Tedrake, N. Roy
{"title":"Collision detection in legged locomotion using supervised learning","authors":"F. Doshi-Velez, E. Brunskill, Alexander C. Shkolnik, T. Kollar, Khashayar Rohanimanesh, Russ Tedrake, N. Roy","doi":"10.1109/IROS.2007.4399538","DOIUrl":null,"url":null,"abstract":"We propose a fast approach for detecting collision- free swing-foot trajectories for legged locomotion over extreme terrains. Instead of simulating the swing trajectories and checking for collisions along them, our approach uses machine learning techniques to predict whether a swing trajectory is collision-free. Using a set of local terrain features, we apply supervised learning to train a classifier to predict collisions. Both in simulation and on a real quadruped platform, our results show that our classifiers can improve the accuracy of collision detection compared to a real-time geometric approach without significantly increasing the computation time.","PeriodicalId":227148,"journal":{"name":"2007 IEEE/RSJ International Conference on Intelligent Robots and Systems","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE/RSJ International Conference on Intelligent Robots and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IROS.2007.4399538","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12
Abstract
We propose a fast approach for detecting collision- free swing-foot trajectories for legged locomotion over extreme terrains. Instead of simulating the swing trajectories and checking for collisions along them, our approach uses machine learning techniques to predict whether a swing trajectory is collision-free. Using a set of local terrain features, we apply supervised learning to train a classifier to predict collisions. Both in simulation and on a real quadruped platform, our results show that our classifiers can improve the accuracy of collision detection compared to a real-time geometric approach without significantly increasing the computation time.