{"title":"An FPGA design for the Two-Band Fast Discrete Hartley Transform","authors":"Lambros Pyrgas, P. Kitsos, A. Skodras","doi":"10.1109/ISSPIT.2016.7886052","DOIUrl":null,"url":null,"abstract":"The discrete Hartley transform finds numerous applications in signal and image processing. An efficient Field Programmable Gate Array implementation for the 64-point Two-Band Fast Discrete Hartley Transform is proposed in this communication. The architecture requires 57 clock cycles to compute the 64-point Two-Band Fast Discrete Hartley Transform and reaches a rate of up to 103.82 million samples per second at a 92 MHz clock frequency. The architecture has been implemented using VHDL and realized on a Cyclone IV FPGA of Altera.","PeriodicalId":371691,"journal":{"name":"2016 IEEE International Symposium on Signal Processing and Information Technology (ISSPIT)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Symposium on Signal Processing and Information Technology (ISSPIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSPIT.2016.7886052","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
The discrete Hartley transform finds numerous applications in signal and image processing. An efficient Field Programmable Gate Array implementation for the 64-point Two-Band Fast Discrete Hartley Transform is proposed in this communication. The architecture requires 57 clock cycles to compute the 64-point Two-Band Fast Discrete Hartley Transform and reaches a rate of up to 103.82 million samples per second at a 92 MHz clock frequency. The architecture has been implemented using VHDL and realized on a Cyclone IV FPGA of Altera.
离散哈特利变换在信号和图像处理中有许多应用。提出了一种有效的现场可编程门阵列实现64点两波段快速离散哈特利变换。该架构需要57个时钟周期来计算64点两频带快速离散哈特利变换,并在92 MHz时钟频率下达到每秒10382万个样本的速率。该体系结构采用VHDL实现,并在Altera公司的Cyclone IV FPGA上实现。