{"title":"Multiresolution wavelet-based approach to identification of modal parameters of a vehicle full-scale crash test","authors":"W. Pawlus, H. Karimi, K. Robbersmyr","doi":"10.1109/ISIC.2012.6398258","DOIUrl":null,"url":null,"abstract":"In this work estimation of vehicle modal parameters was achieved by application of a wavelet-based method. The time-frequency analysis, which comprises those techniques that study a signal in both the time and frequency domains simultaneously, using Morlet wavelet properties are applied to the measured acceleration pulse of the colliding vehicle. Determination of the ridge of the wavelet coefficients matrix makes it possible to identify the frequency components of the recorded crash pulse. Subsequently, by using the estimated natural frequency of the system, the values of damping factor for a given mode shape are assessed. In this work there are concerned both: the major frequencies of the crash pulse and damping factor for the major mode shape.","PeriodicalId":242298,"journal":{"name":"2012 IEEE International Symposium on Intelligent Control","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE International Symposium on Intelligent Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIC.2012.6398258","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
In this work estimation of vehicle modal parameters was achieved by application of a wavelet-based method. The time-frequency analysis, which comprises those techniques that study a signal in both the time and frequency domains simultaneously, using Morlet wavelet properties are applied to the measured acceleration pulse of the colliding vehicle. Determination of the ridge of the wavelet coefficients matrix makes it possible to identify the frequency components of the recorded crash pulse. Subsequently, by using the estimated natural frequency of the system, the values of damping factor for a given mode shape are assessed. In this work there are concerned both: the major frequencies of the crash pulse and damping factor for the major mode shape.