{"title":"Developing a Novel fMRI-Compatible Motion Tracking System for Haptic Motor Control Experiments","authors":"M. Rodríguez-Ugarte, Anastasia Sylaidi, A. Faisal","doi":"10.5220/0005094700250030","DOIUrl":null,"url":null,"abstract":"Human neuroimaging can play a key role in addressing open questions in motor neuroscience and embodied cognition by linking human movement experiments and motor psychophysics to the neural foundation of motor control. To this end we designed and built fMOVE, an fMRI-compatible motion tracking system that captures 3DOF goal-directed movements of human subjects within a neuroimaging scanner. fMOVE constitutes an ultra-low-cost technology, based on a zoom lens high-frame rate USB camera and, our adaptation library for camera-based motion tracking and experiment control. Our motion tracking algorithm tracks the position of markers attached to a hand-held object. The system enables to provide the scanned subjects a closed-loop real time visual feedback of their motion and control of complex, goal-oriented movements. The latter are instructed by simple speed-accuracy tasks or goal-oriented object manipulation. The system’s tracking precision was tested and found within its operational parameters comparable to the performance levels of a scientific grade electromagnetic motion tracking system. fMOVE thus offers a lowcost methodological platform to re-approach the objectives of motor neuroscience by enabling ecologically more valid motor tasks in neuroimaging studies.","PeriodicalId":167011,"journal":{"name":"International Congress on Neurotechnology, Electronics and Informatics","volume":"85 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Congress on Neurotechnology, Electronics and Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5220/0005094700250030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
Human neuroimaging can play a key role in addressing open questions in motor neuroscience and embodied cognition by linking human movement experiments and motor psychophysics to the neural foundation of motor control. To this end we designed and built fMOVE, an fMRI-compatible motion tracking system that captures 3DOF goal-directed movements of human subjects within a neuroimaging scanner. fMOVE constitutes an ultra-low-cost technology, based on a zoom lens high-frame rate USB camera and, our adaptation library for camera-based motion tracking and experiment control. Our motion tracking algorithm tracks the position of markers attached to a hand-held object. The system enables to provide the scanned subjects a closed-loop real time visual feedback of their motion and control of complex, goal-oriented movements. The latter are instructed by simple speed-accuracy tasks or goal-oriented object manipulation. The system’s tracking precision was tested and found within its operational parameters comparable to the performance levels of a scientific grade electromagnetic motion tracking system. fMOVE thus offers a lowcost methodological platform to re-approach the objectives of motor neuroscience by enabling ecologically more valid motor tasks in neuroimaging studies.