{"title":"A comparison of time-aware ranking methods","authors":"Nattiya Kanhabua, K. Nørvåg","doi":"10.1145/2009916.2010147","DOIUrl":null,"url":null,"abstract":"When searching a temporal document collection, e.g., news archives or blogs, the time dimension must be explicitly incorporated into a retrieval model in order to improve relevance ranking. Previous work has followed one of two main approaches: 1) a mixture model linearly combining textual similarity and temporal similarity, or 2) a probabilistic model generating a query from the textual and temporal part of a document independently. In this paper, we compare the effectiveness of different time-aware ranking methods by using a mixture model applied to all methods. Extensive evaluation is conducted using the New York Times Annotated Corpus, queries and relevance judgments obtained using the Amazon Mechanical Turk.","PeriodicalId":356580,"journal":{"name":"Proceedings of the 34th international ACM SIGIR conference on Research and development in Information Retrieval","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 34th international ACM SIGIR conference on Research and development in Information Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2009916.2010147","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20
Abstract
When searching a temporal document collection, e.g., news archives or blogs, the time dimension must be explicitly incorporated into a retrieval model in order to improve relevance ranking. Previous work has followed one of two main approaches: 1) a mixture model linearly combining textual similarity and temporal similarity, or 2) a probabilistic model generating a query from the textual and temporal part of a document independently. In this paper, we compare the effectiveness of different time-aware ranking methods by using a mixture model applied to all methods. Extensive evaluation is conducted using the New York Times Annotated Corpus, queries and relevance judgments obtained using the Amazon Mechanical Turk.