A comparison of time-aware ranking methods

Nattiya Kanhabua, K. Nørvåg
{"title":"A comparison of time-aware ranking methods","authors":"Nattiya Kanhabua, K. Nørvåg","doi":"10.1145/2009916.2010147","DOIUrl":null,"url":null,"abstract":"When searching a temporal document collection, e.g., news archives or blogs, the time dimension must be explicitly incorporated into a retrieval model in order to improve relevance ranking. Previous work has followed one of two main approaches: 1) a mixture model linearly combining textual similarity and temporal similarity, or 2) a probabilistic model generating a query from the textual and temporal part of a document independently. In this paper, we compare the effectiveness of different time-aware ranking methods by using a mixture model applied to all methods. Extensive evaluation is conducted using the New York Times Annotated Corpus, queries and relevance judgments obtained using the Amazon Mechanical Turk.","PeriodicalId":356580,"journal":{"name":"Proceedings of the 34th international ACM SIGIR conference on Research and development in Information Retrieval","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 34th international ACM SIGIR conference on Research and development in Information Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2009916.2010147","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

Abstract

When searching a temporal document collection, e.g., news archives or blogs, the time dimension must be explicitly incorporated into a retrieval model in order to improve relevance ranking. Previous work has followed one of two main approaches: 1) a mixture model linearly combining textual similarity and temporal similarity, or 2) a probabilistic model generating a query from the textual and temporal part of a document independently. In this paper, we compare the effectiveness of different time-aware ranking methods by using a mixture model applied to all methods. Extensive evaluation is conducted using the New York Times Annotated Corpus, queries and relevance judgments obtained using the Amazon Mechanical Turk.
时间感知排序方法的比较
当搜索一个时间文档集合时,例如,新闻档案或博客,时间维度必须明确地合并到检索模型中,以提高相关性排名。以前的工作遵循两种主要方法之一:1)线性组合文本相似性和时间相似性的混合模型,或2)从文档的文本和时间部分独立生成查询的概率模型。在本文中,我们通过一个适用于所有方法的混合模型,比较了不同时间感知排序方法的有效性。使用《纽约时报》注释语料库进行广泛的评估,使用亚马逊机械土耳其人获得查询和相关性判断。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信