V. Papavassiliou, Fotini Simistira, V. Katsouros, G. Carayannis
{"title":"A Morphology Based Approach for Binarization of Handwritten Documents","authors":"V. Papavassiliou, Fotini Simistira, V. Katsouros, G. Carayannis","doi":"10.1109/ICFHR.2012.158","DOIUrl":null,"url":null,"abstract":"Document image binarization is an initial though critical stage towards the recognition of the text components of a document. This paper describes an efficient method based on mathematical morphology for extracting text regions from degraded handwritten document images. The basic stages of our approach are: (a) top-hat-by-reconstruction to produce a filtered image with reasonable even background, (b) region growing starting from a set of seed points and attaching to each seed similar intensity neighboring pixels and (c) conditional extension of the initially detected text regions based on the values of the second derivative of the filtered image. The method was evaluated on the benchmarking dataset of the International Document Image Binarization Contest (DIBCO 2011) and show promising results.","PeriodicalId":291062,"journal":{"name":"2012 International Conference on Frontiers in Handwriting Recognition","volume":"63 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 International Conference on Frontiers in Handwriting Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICFHR.2012.158","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12
Abstract
Document image binarization is an initial though critical stage towards the recognition of the text components of a document. This paper describes an efficient method based on mathematical morphology for extracting text regions from degraded handwritten document images. The basic stages of our approach are: (a) top-hat-by-reconstruction to produce a filtered image with reasonable even background, (b) region growing starting from a set of seed points and attaching to each seed similar intensity neighboring pixels and (c) conditional extension of the initially detected text regions based on the values of the second derivative of the filtered image. The method was evaluated on the benchmarking dataset of the International Document Image Binarization Contest (DIBCO 2011) and show promising results.