{"title":"Post Quantum Cryptography(PQC) - An overview: (Invited Paper)","authors":"M. Kumar, P. Pattnaik","doi":"10.1109/HPEC43674.2020.9286147","DOIUrl":null,"url":null,"abstract":"We discuss the Post Quantum Cryptography algorithms for key establishment under consideration by NIST for standardization. Three of these, Crystals- Kyber, Classic McEliece and Supersingular Isogeny based Key Encapsulation (SIKE), are representatives of the three classes of hard problems underlying the security of almost all 69 candidate algorithms accepted by NIST for consideration in round 1 of evaluation. For each algorithm, we briefly describe the hard problem underlying the algorithm's cryptographic strength, the algebraic structure i.e., the groups or finite fields, underlying the computations, the basic computations performed in these algorithms, the algorithm itself, and the performance considerations for efficient implementation of the basic algorithm on conventional many-core processors. For Crystals- Kyber and SIKE, we will discuss the potential solutions to improve their performance on many-core processors.","PeriodicalId":168544,"journal":{"name":"2020 IEEE High Performance Extreme Computing Conference (HPEC)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE High Performance Extreme Computing Conference (HPEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HPEC43674.2020.9286147","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11
Abstract
We discuss the Post Quantum Cryptography algorithms for key establishment under consideration by NIST for standardization. Three of these, Crystals- Kyber, Classic McEliece and Supersingular Isogeny based Key Encapsulation (SIKE), are representatives of the three classes of hard problems underlying the security of almost all 69 candidate algorithms accepted by NIST for consideration in round 1 of evaluation. For each algorithm, we briefly describe the hard problem underlying the algorithm's cryptographic strength, the algebraic structure i.e., the groups or finite fields, underlying the computations, the basic computations performed in these algorithms, the algorithm itself, and the performance considerations for efficient implementation of the basic algorithm on conventional many-core processors. For Crystals- Kyber and SIKE, we will discuss the potential solutions to improve their performance on many-core processors.