High-Dielectric 3-D Printable Materials for Laser Accelerators

Ethan M. Walker, R. Gilbertson, E. Simakov, G. Pilania, R. Muenchausen
{"title":"High-Dielectric 3-D Printable Materials for Laser Accelerators","authors":"Ethan M. Walker, R. Gilbertson, E. Simakov, G. Pilania, R. Muenchausen","doi":"10.1109/AAC.2018.8659400","DOIUrl":null,"url":null,"abstract":"“Logpile” photonic band gap structures are an attractive option for the construction of laser dielectric accelerators. In principle, these structures can be fabricated using a commercial Nanoscribe 3-D printer, although currently available resins do not meet the materials requirements necessary for a functional dielectric waveguide for laser accelerators. In particular, the requisite optical-frequency dielectric constant is well outside the range of conventional organic materials. This work examines material options for overcoming this barrier, while simultaneously meeting requirements for loss tangent, laser-induced breakdown, and compatibility with two-photon polymerization. We present computational screening of more exotic organics resins, and synthetic options for promising candidates. In addition, we discuss materials approaches involving metal-polymer complexes, as well as germanium and metal-chalcogenide polymer nanocomposites. Prospects, inherent limitations, and initial characterization of these various materials will be discussed in the context of 3D-printed dielectric accelerators.","PeriodicalId":339772,"journal":{"name":"2018 IEEE Advanced Accelerator Concepts Workshop (AAC)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Advanced Accelerator Concepts Workshop (AAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AAC.2018.8659400","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

“Logpile” photonic band gap structures are an attractive option for the construction of laser dielectric accelerators. In principle, these structures can be fabricated using a commercial Nanoscribe 3-D printer, although currently available resins do not meet the materials requirements necessary for a functional dielectric waveguide for laser accelerators. In particular, the requisite optical-frequency dielectric constant is well outside the range of conventional organic materials. This work examines material options for overcoming this barrier, while simultaneously meeting requirements for loss tangent, laser-induced breakdown, and compatibility with two-photon polymerization. We present computational screening of more exotic organics resins, and synthetic options for promising candidates. In addition, we discuss materials approaches involving metal-polymer complexes, as well as germanium and metal-chalcogenide polymer nanocomposites. Prospects, inherent limitations, and initial characterization of these various materials will be discussed in the context of 3D-printed dielectric accelerators.
激光加速器用高介电3-D可打印材料
“Logpile”光子带隙结构是构建激光介电加速器的一个有吸引力的选择。原则上,这些结构可以使用商用Nanoscribe 3-D打印机制造,尽管目前可用的树脂不满足用于激光加速器的功能性介电波导所需的材料要求。特别是,所需的光频率介电常数远远超出了传统有机材料的范围。这项工作研究了克服这一障碍的材料选择,同时满足损耗切线、激光诱导击穿和双光子聚合的兼容性要求。我们提出计算筛选更多的外来有机树脂,和有前途的候选人的合成选择。此外,我们还讨论了涉及金属-聚合物配合物的材料方法,以及锗和金属-硫族化物聚合物纳米复合材料。在3d打印介质加速器的背景下,将讨论这些不同材料的前景、固有局限性和初步表征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信