Unsupervised classification of SAR imagery using polarimetric decomposition to preserve scattering characteristics

R. Marapareddy, J. Aanstoos, N. Younan
{"title":"Unsupervised classification of SAR imagery using polarimetric decomposition to preserve scattering characteristics","authors":"R. Marapareddy, J. Aanstoos, N. Younan","doi":"10.1109/AIPR.2015.7444532","DOIUrl":null,"url":null,"abstract":"We propose an unsupervised classification method using polarimetric synthetic aperture radar data to detect anomalies on earthen levees. This process mainly involves two stages: 1. Apply the scattering model-based decomposition developed by Freeman and Durden to divide pixels into three scattering categories: surface scattering, volume scattering, and double-bounce scattering. A class initialization scheme is also performed to initially merge clusters from many small clusters in each scattering category by applying a merge criterion developed based on the Wishart distance measure. 2. The iterative Wishart classifier is applied, which is a maximum likelihood classifier based on the complex Wishart distribution. This method not only uses a statistical classification, but also preserves the purity of dominant polarimetric scattering properties, and is superior to the entropy/anisotropy/Wishart classifier. An automated color rendering scheme is applied, based on the classes' scattering category to code the pixels. The effectiveness of the algorithms is demonstrated using fully quad-polarimetric L-band SAR imagery from the NASA Jet Propulsion Laboratory's (JPL's) Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR). The study area is a section of the lower Mississippi River valley in the southern USA, where earthen flood control levees are maintained by the US Army Corps of Engineers.","PeriodicalId":440673,"journal":{"name":"2015 IEEE Applied Imagery Pattern Recognition Workshop (AIPR)","volume":"2017 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE Applied Imagery Pattern Recognition Workshop (AIPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AIPR.2015.7444532","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

We propose an unsupervised classification method using polarimetric synthetic aperture radar data to detect anomalies on earthen levees. This process mainly involves two stages: 1. Apply the scattering model-based decomposition developed by Freeman and Durden to divide pixels into three scattering categories: surface scattering, volume scattering, and double-bounce scattering. A class initialization scheme is also performed to initially merge clusters from many small clusters in each scattering category by applying a merge criterion developed based on the Wishart distance measure. 2. The iterative Wishart classifier is applied, which is a maximum likelihood classifier based on the complex Wishart distribution. This method not only uses a statistical classification, but also preserves the purity of dominant polarimetric scattering properties, and is superior to the entropy/anisotropy/Wishart classifier. An automated color rendering scheme is applied, based on the classes' scattering category to code the pixels. The effectiveness of the algorithms is demonstrated using fully quad-polarimetric L-band SAR imagery from the NASA Jet Propulsion Laboratory's (JPL's) Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR). The study area is a section of the lower Mississippi River valley in the southern USA, where earthen flood control levees are maintained by the US Army Corps of Engineers.
利用极化分解保持散射特性的SAR图像无监督分类
提出了一种利用极化合成孔径雷达数据进行土堤异常探测的无监督分类方法。这一过程主要包括两个阶段:1。利用Freeman和Durden提出的基于散射模型的分解方法,将像素分为三种散射类型:表面散射、体积散射和双反弹散射。通过应用基于Wishart距离度量的合并准则,还执行了一个类初始化方案,对每个散射类别中的许多小簇进行初始合并。2. 采用迭代Wishart分类器,这是一种基于复杂Wishart分布的极大似然分类器。该方法不仅使用了统计分类,而且保持了优势极化散射特性的纯度,优于熵/各向异性/Wishart分类器。基于类的散射分类,采用自动显色方案对像素进行编码。利用NASA喷气推进实验室(JPL)无人飞行器合成孔径雷达(UAVSAR)的全四偏振l波段SAR图像证明了算法的有效性。研究区域是美国南部密西西比河下游河谷的一段,那里的土质防洪堤坝由美国陆军工程兵团维护。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信