{"title":"Elastic-net constrained multiple kernel learning using a majorization-minimization approach","authors":"L. Citi","doi":"10.1109/CEEC.2015.7332695","DOIUrl":null,"url":null,"abstract":"This papers introduces an algorithm for the solution of multiple kernel learning (MKL) problems with elastic-net constraints on the kernel weights. While efficient algorithms exist for MKL problems with L1- and Lp-norm (p > 1) constraints, a similar algorithm was lacking in the case of MKL under elastic-net constraints. For example, algorithms based on the cutting plane method require large and/or commercial libraries. The algorithm presented here can solve elastic-net constrained MKL problems very efficiently with simple code that does not rely on external libraries (except a conventional SVM solver). Based on majorization-minimization (MM), at each step it optimizes the kernel weights by minimizing a carefully designed surrogate function, called a majorizer, which can be solved in closed form. This improved efficiency and applicability facilitates the inclusion of elastic-net constrained MKL in existing open-source machine learning libraries.","PeriodicalId":294036,"journal":{"name":"2015 7th Computer Science and Electronic Engineering Conference (CEEC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 7th Computer Science and Electronic Engineering Conference (CEEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEEC.2015.7332695","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
This papers introduces an algorithm for the solution of multiple kernel learning (MKL) problems with elastic-net constraints on the kernel weights. While efficient algorithms exist for MKL problems with L1- and Lp-norm (p > 1) constraints, a similar algorithm was lacking in the case of MKL under elastic-net constraints. For example, algorithms based on the cutting plane method require large and/or commercial libraries. The algorithm presented here can solve elastic-net constrained MKL problems very efficiently with simple code that does not rely on external libraries (except a conventional SVM solver). Based on majorization-minimization (MM), at each step it optimizes the kernel weights by minimizing a carefully designed surrogate function, called a majorizer, which can be solved in closed form. This improved efficiency and applicability facilitates the inclusion of elastic-net constrained MKL in existing open-source machine learning libraries.