Synthetic Power Line Communications Channel Generation with Autoencoders and GANs

Davide Righini, N. A. Letizia, A. Tonello
{"title":"Synthetic Power Line Communications Channel Generation with Autoencoders and GANs","authors":"Davide Righini, N. A. Letizia, A. Tonello","doi":"10.1109/SmartGridComm.2019.8909700","DOIUrl":null,"url":null,"abstract":"Power Line Communication (PLC) technologies have a relevant role in smart energy grids. Channel modeling is important to assess their performance and enable the development of advanced PLC solutions. In this paper, we propose an approach to channel modeling that exploits AutoEncoders (AEs) and Generative Adversarial Networks (GANs) to synthetically generate PLC Channel Transfer Functions (CTFs). A dataset obtained from measurements of CTFs is handled with an AE to extract its complete description through features. Then, a GAN is trained to generate new features that possess the same statistical distribution of the extracted ones. This allows the generation of new CTFs with the previously trained decoding part of the AE. The presented method is evaluated through simulations using a measured dataset and the results are verified with traditional metrics used to statistically characterize the channel.","PeriodicalId":377150,"journal":{"name":"2019 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SmartGridComm.2019.8909700","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Power Line Communication (PLC) technologies have a relevant role in smart energy grids. Channel modeling is important to assess their performance and enable the development of advanced PLC solutions. In this paper, we propose an approach to channel modeling that exploits AutoEncoders (AEs) and Generative Adversarial Networks (GANs) to synthetically generate PLC Channel Transfer Functions (CTFs). A dataset obtained from measurements of CTFs is handled with an AE to extract its complete description through features. Then, a GAN is trained to generate new features that possess the same statistical distribution of the extracted ones. This allows the generation of new CTFs with the previously trained decoding part of the AE. The presented method is evaluated through simulations using a measured dataset and the results are verified with traditional metrics used to statistically characterize the channel.
用自动编码器和gan合成电力线通信信道生成
电力线通信(PLC)技术在智能电网中具有重要的作用。通道建模对于评估其性能和开发先进的PLC解决方案非常重要。在本文中,我们提出了一种通道建模方法,该方法利用自动编码器(AEs)和生成对抗网络(gan)来综合生成PLC通道传递函数(ctf)。利用声发射对CTFs测量数据集进行处理,通过特征提取CTFs的完整描述。然后,训练GAN生成与提取的特征具有相同统计分布的新特征。这允许使用AE先前训练的解码部分生成新的ctf。通过使用测量数据集的模拟来评估所提出的方法,并使用用于统计表征信道的传统度量来验证结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信