{"title":"A","authors":"L. Cabrera","doi":"10.2307/j.ctv1fkgcfv.6","DOIUrl":null,"url":null,"abstract":"Norbert Pelc is Professor of Radiology, Emeritus. His primary research interests are in the physics, engineering, and mathematics of diagnostic imaging and the development of applications of this imaging technology. His current work focuses on computed tomography, specifically in methods to improve the information content and image quality and to reduce the radiation dose from these examinations. He holds a doctorate and master degrees in Medical Radiological Physics from Harvard University and a BS from the University of Wisconsin in Madison. He served on the first National Advisory Council of the National Institute of Biomedical Imaging and Bioengineering of the NIH. He is a member of the National Academy of Engineering and a Fellow of the American Association of Physicists in Medicine, the International Society for Magnetic Resonance in Medicine, the American Institute of Medical and Biological Engineering, and of SPIE. sensors to detect signals and mathematical methods to covert the measured signals to images. Additional image processing methods are used to extract physiological information from the images.","PeriodicalId":305883,"journal":{"name":"The Sacred Language of the Abakuá","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Sacred Language of the Abakuá","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2307/j.ctv1fkgcfv.6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Norbert Pelc is Professor of Radiology, Emeritus. His primary research interests are in the physics, engineering, and mathematics of diagnostic imaging and the development of applications of this imaging technology. His current work focuses on computed tomography, specifically in methods to improve the information content and image quality and to reduce the radiation dose from these examinations. He holds a doctorate and master degrees in Medical Radiological Physics from Harvard University and a BS from the University of Wisconsin in Madison. He served on the first National Advisory Council of the National Institute of Biomedical Imaging and Bioengineering of the NIH. He is a member of the National Academy of Engineering and a Fellow of the American Association of Physicists in Medicine, the International Society for Magnetic Resonance in Medicine, the American Institute of Medical and Biological Engineering, and of SPIE. sensors to detect signals and mathematical methods to covert the measured signals to images. Additional image processing methods are used to extract physiological information from the images.