Measuring Modality Utilization in Multi-Modal Neural Networks

Saurav Singh, Panos P. Markopoulos, E. Saber, Jesse D. Lew, Jamison Heard
{"title":"Measuring Modality Utilization in Multi-Modal Neural Networks","authors":"Saurav Singh, Panos P. Markopoulos, E. Saber, Jesse D. Lew, Jamison Heard","doi":"10.1109/CAI54212.2023.00014","DOIUrl":null,"url":null,"abstract":"Multimodal data provides information from different sensor types about the same underlying phenomenon and enhances machine learning performance. However, neural networks trained end-to-end on all the modalities tend to rely mostly on one of the most dominant modalities. The black box nature of neural networks makes it difficult to assess the reliance of the network on various modalities. This work presents a novel modality utilization metric that quantifies the network reliance on different modalities. The proposed metric is validated on NTIRE-21 (classification problem) and MCubeS (image segmentation problem) datasets. The modality utilization metric contributes towards the explainability of multimodal neural networks and offers great utility in the field of multimodal data fusion.","PeriodicalId":129324,"journal":{"name":"2023 IEEE Conference on Artificial Intelligence (CAI)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE Conference on Artificial Intelligence (CAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CAI54212.2023.00014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Multimodal data provides information from different sensor types about the same underlying phenomenon and enhances machine learning performance. However, neural networks trained end-to-end on all the modalities tend to rely mostly on one of the most dominant modalities. The black box nature of neural networks makes it difficult to assess the reliance of the network on various modalities. This work presents a novel modality utilization metric that quantifies the network reliance on different modalities. The proposed metric is validated on NTIRE-21 (classification problem) and MCubeS (image segmentation problem) datasets. The modality utilization metric contributes towards the explainability of multimodal neural networks and offers great utility in the field of multimodal data fusion.
测量多模态神经网络的模态利用
多模态数据提供了来自不同传感器类型的关于相同底层现象的信息,并增强了机器学习性能。然而,在所有模态上进行端到端训练的神经网络往往主要依赖于最主要的一种模态。神经网络的黑箱特性使得评估网络对各种模态的依赖变得困难。这项工作提出了一种新的模式利用指标,量化网络对不同模式的依赖。在NTIRE-21(分类问题)和MCubeS(图像分割问题)数据集上验证了所提出的度量。模态利用度量有助于提高多模态神经网络的可解释性,在多模态数据融合领域具有重要的应用价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信