Neural Colorization of Laser Scans

M. C. Trinidad, C. Andújar, C. Bosch, A. Chica, Imanol Muñoz-Pandiella
{"title":"Neural Colorization of Laser Scans","authors":"M. C. Trinidad, C. Andújar, C. Bosch, A. Chica, Imanol Muñoz-Pandiella","doi":"10.2312/ceig.20211356","DOIUrl":null,"url":null,"abstract":"Laser scanners enable the digitization of 3D surfaces by generating a point cloud where each point sample includes an intensity (infrared reflectivity) value. Some LiDAR scanners also incorporate cameras to capture the color of the surfaces visible from the scanner location. Getting usable colors everywhere across 360◦scans is a challenging task, especially for indoor scenes. LiDAR scanners lack flashes, and placing proper light sources for a 360◦indoor scene is either unfeasible or undesirable. As a result, color data from LiDAR scans often do not have an adequate quality, either because of poor exposition (too bright or too dark areas) or because of severe illumination changes between scans (e.g. direct Sunlight vs cloudy lighting). In this paper, we present a new method to recover plausible color data from the infrared data available in LiDAR scans. The main idea is to train an adapted image-to-image translation network using color and intensity values on well-exposed areas of scans. At inference time, the network is able to recover plausible color using exclusively the intensity values. The immediate application of our approach is the selective colorization of LiDAR data in those scans or regions with missing or poor color data.","PeriodicalId":385751,"journal":{"name":"Spanish Computer Graphics Conference","volume":"193 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Spanish Computer Graphics Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2312/ceig.20211356","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Laser scanners enable the digitization of 3D surfaces by generating a point cloud where each point sample includes an intensity (infrared reflectivity) value. Some LiDAR scanners also incorporate cameras to capture the color of the surfaces visible from the scanner location. Getting usable colors everywhere across 360◦scans is a challenging task, especially for indoor scenes. LiDAR scanners lack flashes, and placing proper light sources for a 360◦indoor scene is either unfeasible or undesirable. As a result, color data from LiDAR scans often do not have an adequate quality, either because of poor exposition (too bright or too dark areas) or because of severe illumination changes between scans (e.g. direct Sunlight vs cloudy lighting). In this paper, we present a new method to recover plausible color data from the infrared data available in LiDAR scans. The main idea is to train an adapted image-to-image translation network using color and intensity values on well-exposed areas of scans. At inference time, the network is able to recover plausible color using exclusively the intensity values. The immediate application of our approach is the selective colorization of LiDAR data in those scans or regions with missing or poor color data.
激光扫描的神经着色
激光扫描仪通过生成点云来实现3D表面的数字化,其中每个点样本包含一个强度(红外反射率)值。一些激光雷达扫描仪还集成了摄像头,以捕捉从扫描仪位置可见的表面颜色。在360度扫描中获得可用的颜色是一项具有挑战性的任务,特别是对于室内场景。激光雷达扫描仪缺乏闪光,并放置适当的光源360度室内场景是不可行的或不希望的。因此,来自激光雷达扫描的颜色数据通常没有足够的质量,要么是因为曝光不良(太亮或太暗的区域),要么是因为扫描之间的光照变化严重(例如,阳光直射与阴天照明)。本文提出了一种从激光雷达扫描的红外数据中恢复可信颜色数据的新方法。其主要思想是训练一个自适应的图像到图像的转换网络,在扫描的充分暴露的区域使用颜色和强度值。在推理时,网络能够仅使用强度值恢复可信的颜色。我们的方法的直接应用是在那些扫描或有缺失或差的颜色数据的区域激光雷达数据的选择性着色。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信