Betweenness Centrality Approaches for Image Retrieval

B. Marshall, Anuya Ghanekar, John A. Springer, E. Matson
{"title":"Betweenness Centrality Approaches for Image Retrieval","authors":"B. Marshall, Anuya Ghanekar, John A. Springer, E. Matson","doi":"10.1109/ISM.2015.83","DOIUrl":null,"url":null,"abstract":"To quantify social tags' relatedness in an image collection, we examine the betweenness centrality measure. We depict the image collection as a multi-graph representation, where nodes are the social tags and edges bind an image's social tags. We present our weighted betweenness centrality algorithm and compare it to the unweighted version on sparse and dense graphs. The MIRFLICKR and ImageCLEF benchmark image collections are used in our experimental evaluation. We notice an 11% increase in the computation runtime with weighted edges in determining shortest paths within our image collections. We discuss the intended impact of our approach in conjunction with a node importance evaluation, via the k-path centrality algorithm, for determining situation-aware path planning applications.","PeriodicalId":250353,"journal":{"name":"2015 IEEE International Symposium on Multimedia (ISM)","volume":"77 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Symposium on Multimedia (ISM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISM.2015.83","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

To quantify social tags' relatedness in an image collection, we examine the betweenness centrality measure. We depict the image collection as a multi-graph representation, where nodes are the social tags and edges bind an image's social tags. We present our weighted betweenness centrality algorithm and compare it to the unweighted version on sparse and dense graphs. The MIRFLICKR and ImageCLEF benchmark image collections are used in our experimental evaluation. We notice an 11% increase in the computation runtime with weighted edges in determining shortest paths within our image collections. We discuss the intended impact of our approach in conjunction with a node importance evaluation, via the k-path centrality algorithm, for determining situation-aware path planning applications.
图像检索的中间性中心性方法
为了量化社会标签在图像集合中的相关性,我们研究了中间性中心性度量。我们将图像集合描述为多图表示,其中节点是社交标签,边缘绑定图像的社交标签。我们提出了加权中间度中心性算法,并将其与稀疏图和密集图上的非加权中心性算法进行了比较。在我们的实验评估中使用了MIRFLICKR和ImageCLEF基准图像集合。我们注意到,在确定图像集合中的最短路径时,加权边的计算运行时间增加了11%。我们通过k-path中心性算法讨论了我们的方法与节点重要性评估相结合的预期影响,以确定态势感知路径规划应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信