An inverse scattering procedure in Lebesgue spaces with non-constant exponents

C. Estatico, A. Fedeli, M. Pastorino, A. Randazzo
{"title":"An inverse scattering procedure in Lebesgue spaces with non-constant exponents","authors":"C. Estatico, A. Fedeli, M. Pastorino, A. Randazzo","doi":"10.23919/URSIGASS.2017.8105143","DOIUrl":null,"url":null,"abstract":"Within the ever-growing field of electromagnetic imaging, inversion procedures are conventionally described in the mathematical framework of Hilbert spaces. Usually, the over-smoothing effects and oscillations that arise using a Hilbert-space formulation make the dielectric reconstruction of targets inaccurate. This problem is strongly reduced by the recent development of inversion techniques in Banach spaces. However, the selection of the Banach space norm parameter is critical for obtaining precise reconstructions, and no exact rules exist for this choice. To overcome this issue, an innovative approach in variable exponent Lebesgue spaces is proposed here, along with a preliminary numerical validation.","PeriodicalId":377869,"journal":{"name":"2017 XXXIInd General Assembly and Scientific Symposium of the International Union of Radio Science (URSI GASS)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 XXXIInd General Assembly and Scientific Symposium of the International Union of Radio Science (URSI GASS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/URSIGASS.2017.8105143","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Within the ever-growing field of electromagnetic imaging, inversion procedures are conventionally described in the mathematical framework of Hilbert spaces. Usually, the over-smoothing effects and oscillations that arise using a Hilbert-space formulation make the dielectric reconstruction of targets inaccurate. This problem is strongly reduced by the recent development of inversion techniques in Banach spaces. However, the selection of the Banach space norm parameter is critical for obtaining precise reconstructions, and no exact rules exist for this choice. To overcome this issue, an innovative approach in variable exponent Lebesgue spaces is proposed here, along with a preliminary numerical validation.
非常指数勒贝格空间中的逆散射过程
在不断发展的电磁成像领域,反演过程通常在希尔伯特空间的数学框架中描述。通常,使用希尔伯特空间公式产生的过平滑效应和振荡使目标的介电重建不准确。最近Banach空间反演技术的发展有力地减少了这一问题。然而,Banach空间范数参数的选择对于获得精确的重构是至关重要的,并且对于这种选择没有确切的规则。为了克服这一问题,本文提出了一种变指数勒贝格空间的创新方法,并进行了初步的数值验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信