aiai at the FinSim-2 task: Finance Domain Terms Automatic Classification Via Word Ontology and Embedding

Ke Tian, Hua Chen
{"title":"aiai at the FinSim-2 task: Finance Domain Terms Automatic Classification Via Word Ontology and Embedding","authors":"Ke Tian, Hua Chen","doi":"10.1145/3442442.3451388","DOIUrl":null,"url":null,"abstract":"This paper describes the method that we submitted to the FinSim-2 task on learning similarities for the financial domain. This task aims to automatically classify the Financial domain terms into the most relevant hypernym (or top-level) concept in an external ontology. This paper shows the result of experiments using the Catboost, Attention-LSTM, BERT, RoBERTa to develop an automatic finance domain classifier via word ontology and embedding. The experiment result demonstrates that each model could be an effective method to tackle the FinSim-2 task, respectively.","PeriodicalId":129420,"journal":{"name":"Companion Proceedings of the Web Conference 2021","volume":"102 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Companion Proceedings of the Web Conference 2021","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3442442.3451388","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

This paper describes the method that we submitted to the FinSim-2 task on learning similarities for the financial domain. This task aims to automatically classify the Financial domain terms into the most relevant hypernym (or top-level) concept in an external ontology. This paper shows the result of experiments using the Catboost, Attention-LSTM, BERT, RoBERTa to develop an automatic finance domain classifier via word ontology and embedding. The experiment result demonstrates that each model could be an effective method to tackle the FinSim-2 task, respectively.
基于词本体和嵌入的金融领域术语自动分类
本文描述了我们提交给FinSim-2任务的关于金融领域相似性学习的方法。此任务旨在将金融领域术语自动分类为外部本体中最相关的超词(或顶级)概念。本文介绍了利用Catboost、Attention-LSTM、BERT、RoBERTa等方法,利用词本体和嵌入技术开发金融领域自动分类器的实验结果。实验结果表明,每种模型都能有效地解决FinSim-2任务。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信