License plate localization using a Naïve Bayes classifier

Alfian Abdul Halin, N. Sharef, A. Jantan, L. N. Abdullah
{"title":"License plate localization using a Naïve Bayes classifier","authors":"Alfian Abdul Halin, N. Sharef, A. Jantan, L. N. Abdullah","doi":"10.1109/ICSIPA.2013.6707971","DOIUrl":null,"url":null,"abstract":"This paper presents a probabilistic technique to localize license plates regions for cars adhering to the standard set by the Malaysian Road Transport Department. Images of the front/rear-view of cars displaying their license plates are firstly preprocessed, followed by features extraction generated from connected components analysis. These features are then used to train a Naïve Bayes classifier for the final task of license plates localization. Experimental results conducted on 144 images have shown that considering two candidates with the highest posterior probabilities better guarantees license plates regions are properly localized, with a recall of 0.98.","PeriodicalId":440373,"journal":{"name":"2013 IEEE International Conference on Signal and Image Processing Applications","volume":"76 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Conference on Signal and Image Processing Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSIPA.2013.6707971","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

This paper presents a probabilistic technique to localize license plates regions for cars adhering to the standard set by the Malaysian Road Transport Department. Images of the front/rear-view of cars displaying their license plates are firstly preprocessed, followed by features extraction generated from connected components analysis. These features are then used to train a Naïve Bayes classifier for the final task of license plates localization. Experimental results conducted on 144 images have shown that considering two candidates with the highest posterior probabilities better guarantees license plates regions are properly localized, with a recall of 0.98.
车牌定位使用Naïve贝叶斯分类器
本文提出了一种概率技术来定位符合马来西亚道路运输部标准的车辆的车牌区域。首先对显示车牌的汽车前后视图图像进行预处理,然后从连接部件分析中提取特征。然后使用这些特征来训练Naïve贝叶斯分类器,以完成车牌定位的最终任务。对144张图像进行的实验结果表明,考虑两个后验概率最高的候选图像可以更好地保证车牌区域的正确定位,召回率为0.98。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信