O. Sotolongo-Grau, Daniel Rodr'iguez-P'erez, J. Antoranz, O. Sotolongo-Costa
{"title":"Non-extensive radiobiology","authors":"O. Sotolongo-Grau, Daniel Rodr'iguez-P'erez, J. Antoranz, O. Sotolongo-Costa","doi":"10.1063/1.3573620","DOIUrl":null,"url":null,"abstract":"The expression of survival factors for radiation damaged cells is based on probabilistic assumptions and experimentally fitted for each tumor, radiation and conditions. Here we show how the simplest of these radiobiological models can be derived from the maximum entropy principle of the classical Boltzmann-Gibbs expression. We extend this derivation using the Tsallis entropy and a cutoff hypothesis, motivated by clinical observations. A generalization of the exponential, the logarithm and the product to a non-extensive framework, provides a simple formula for the survival fraction corresponding to the application of several radiation doses on a living tissue. The obtained expression shows a remarkable agreement with the experimental data found in the literature, also providing a new interpretation of some of the parameters introduced anew. It is also shown how the presented formalism may has direct application in radiotherapy treatment optimization through the definition of the potential effect difference, simply calculated between the tumour and the surrounding tissue.","PeriodicalId":119149,"journal":{"name":"arXiv: Quantitative Methods","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Quantitative Methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/1.3573620","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
The expression of survival factors for radiation damaged cells is based on probabilistic assumptions and experimentally fitted for each tumor, radiation and conditions. Here we show how the simplest of these radiobiological models can be derived from the maximum entropy principle of the classical Boltzmann-Gibbs expression. We extend this derivation using the Tsallis entropy and a cutoff hypothesis, motivated by clinical observations. A generalization of the exponential, the logarithm and the product to a non-extensive framework, provides a simple formula for the survival fraction corresponding to the application of several radiation doses on a living tissue. The obtained expression shows a remarkable agreement with the experimental data found in the literature, also providing a new interpretation of some of the parameters introduced anew. It is also shown how the presented formalism may has direct application in radiotherapy treatment optimization through the definition of the potential effect difference, simply calculated between the tumour and the surrounding tissue.