Node Clustering in Binary Asymmetric Stochastic Block Model with Noisy Label Attributes via SDP

Aydin Jadidi, Mostafa Rahimi Dizadji
{"title":"Node Clustering in Binary Asymmetric Stochastic Block Model with Noisy Label Attributes via SDP","authors":"Aydin Jadidi, Mostafa Rahimi Dizadji","doi":"10.1109/SmartNets50376.2021.9555421","DOIUrl":null,"url":null,"abstract":"This paper calculates sufficient conditions for semidefinite programming (SDP) to achieve exact recovery under the binary asymmetric stochastic block model with a noisy-label attribute for each node. We show that in regimes where semidefinite programming fails and cannot achieve the exact recovery on a graph realization, the presence of a noisy label attribute for each node permits exact recovery. We also calculate necessary conditions that are tight, showing that semidefinite programming is asymptotically optimal. Finally, numerical results on synthetic data are provided, indicating that the asymptotic results of this paper can also be useful for analyzing a graph realization with a finite number of nodes.","PeriodicalId":443191,"journal":{"name":"2021 International Conference on Smart Applications, Communications and Networking (SmartNets)","volume":"177 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Smart Applications, Communications and Networking (SmartNets)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SmartNets50376.2021.9555421","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

This paper calculates sufficient conditions for semidefinite programming (SDP) to achieve exact recovery under the binary asymmetric stochastic block model with a noisy-label attribute for each node. We show that in regimes where semidefinite programming fails and cannot achieve the exact recovery on a graph realization, the presence of a noisy label attribute for each node permits exact recovery. We also calculate necessary conditions that are tight, showing that semidefinite programming is asymptotically optimal. Finally, numerical results on synthetic data are provided, indicating that the asymptotic results of this paper can also be useful for analyzing a graph realization with a finite number of nodes.
基于SDP的带噪声标签属性二元非对称随机块模型节点聚类
本文计算了每个节点都带有噪声标签属性的二元非对称随机块模型下,半确定规划(SDP)实现精确恢复的充分条件。我们证明了在半确定规划失败且不能在图实现上实现精确恢复的情况下,每个节点的噪声标签属性的存在允许精确恢复。我们还计算了紧性的必要条件,证明了半定规划是渐近最优的。最后给出了合成数据的数值结果,表明本文的渐近结果也可用于分析有限节点数的图实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信