Benchmarking Global Optimizers

Antoine Arnoud, Fatih Guvenen, Tatjana Kleineberg
{"title":"Benchmarking Global Optimizers","authors":"Antoine Arnoud, Fatih Guvenen, Tatjana Kleineberg","doi":"10.3386/w26340","DOIUrl":null,"url":null,"abstract":"We benchmark seven global optimization algorithms by comparing their performance on challenging multidimensional test functions as well as a method of simulated moments estimation of a panel data model of earnings dynamics. Five of the algorithms are taken from the popular NLopt open-source library: (i) Controlled Random Search with local mutation (CRS), (ii) Improved Stochastic Ranking Evolution Strategy (ISRES), (iii) Multi-Level Single-Linkage (MLSL) algorithm, (iv) Stochastic Global Optimization (StoGo), and (v) Evolutionary Strategy with Cauchy distribution (ESCH). The other two algorithms are versions of TikTak, which is a multistart global optimization algorithm used in some recent economic applications. For completeness, we add three popular local algorithms to the comparison—the Nelder-Mead downhill simplex algorithm, the Derivative-Free Non-linear Least Squares (DFNLS) algorithm, and a popular variant of the Davidon-Fletcher-Powell (DFPMIN) algorithm. To give a detailed comparison of algorithms, we use a set of benchmarking tools recently developed in the applied mathematics literature. We find that the success rate of many optimizers vary dramatically with the characteristics of each problem and the computational budget that is available. Overall, TikTak is the strongest performer on both the math test functions and the economic application. The next-best performing optimizers are StoGo and CRS for the test functions and MLSL for the economic application.","PeriodicalId":239853,"journal":{"name":"ERN: Other Econometrics: Econometric & Statistical Methods - Special Topics (Topic)","volume":"75 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"37","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Other Econometrics: Econometric & Statistical Methods - Special Topics (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3386/w26340","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 37

Abstract

We benchmark seven global optimization algorithms by comparing their performance on challenging multidimensional test functions as well as a method of simulated moments estimation of a panel data model of earnings dynamics. Five of the algorithms are taken from the popular NLopt open-source library: (i) Controlled Random Search with local mutation (CRS), (ii) Improved Stochastic Ranking Evolution Strategy (ISRES), (iii) Multi-Level Single-Linkage (MLSL) algorithm, (iv) Stochastic Global Optimization (StoGo), and (v) Evolutionary Strategy with Cauchy distribution (ESCH). The other two algorithms are versions of TikTak, which is a multistart global optimization algorithm used in some recent economic applications. For completeness, we add three popular local algorithms to the comparison—the Nelder-Mead downhill simplex algorithm, the Derivative-Free Non-linear Least Squares (DFNLS) algorithm, and a popular variant of the Davidon-Fletcher-Powell (DFPMIN) algorithm. To give a detailed comparison of algorithms, we use a set of benchmarking tools recently developed in the applied mathematics literature. We find that the success rate of many optimizers vary dramatically with the characteristics of each problem and the computational budget that is available. Overall, TikTak is the strongest performer on both the math test functions and the economic application. The next-best performing optimizers are StoGo and CRS for the test functions and MLSL for the economic application.
评测全局优化器
我们通过比较七种全局优化算法在具有挑战性的多维测试函数上的表现以及盈利动态面板数据模型的模拟矩估计方法,对它们进行了基准测试。其中五种算法来自流行的NLopt开源库:(i)局部突变控制随机搜索(CRS), (ii)改进随机排序进化策略(ISRES), (iii)多级单链接(MLSL)算法,(iv)随机全局优化(StoGo)和(v)柯西分布进化策略(ESCH)。另外两种算法是TikTak的版本,TikTak是一种多启动全局优化算法,在最近的一些经济应用中使用。为了完整起见,我们在比较中加入了三种流行的局部算法——Nelder-Mead下坡单纯形算法、无导数非线性最小二乘(DFNLS)算法和david - fletcher - powell (DFPMIN)算法的流行变体。为了对算法进行详细的比较,我们使用了一套最近在应用数学文献中开发的基准工具。我们发现许多优化器的成功率随着每个问题的特征和可用的计算预算而显著变化。总体而言,抖音在数学测试功能和经济应用方面的表现都是最强的。性能第二好的优化器是用于测试函数的StoGo和CRS,以及用于经济应用程序的MLSL。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信