Some results about weakly S-primary ideals of a commutative ring

Essebti Massaoud, Badreddine Gouaid
{"title":"Some results about weakly S-primary ideals of a commutative ring","authors":"Essebti Massaoud, Badreddine Gouaid","doi":"10.56947/gjom.v13i1.928","DOIUrl":null,"url":null,"abstract":"Let R be a commutative ring with identity and S ⊊ R a multiplicative subset. We define a proper ideal P of R disjoint from S to be weakly S-primary if there exists an s ∈ S such that for all a, b ∈ R if 0≠ ab ∈ P then sa ∈ P or sb ∈ √P. We show that weakly S-primary ideals enjoy analogs of many properties of weakly primary ideals and we study the form of weakly S-primary ideals of the amalgamation of A with B along an ideal J with respect to f (denoted by A ⋈fJ). Weakly S-primary ideals of the trivial ring extension are also characterized.","PeriodicalId":421614,"journal":{"name":"Gulf Journal of Mathematics","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gulf Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.56947/gjom.v13i1.928","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Let R be a commutative ring with identity and S ⊊ R a multiplicative subset. We define a proper ideal P of R disjoint from S to be weakly S-primary if there exists an s ∈ S such that for all a, b ∈ R if 0≠ ab ∈ P then sa ∈ P or sb ∈ √P. We show that weakly S-primary ideals enjoy analogs of many properties of weakly primary ideals and we study the form of weakly S-primary ideals of the amalgamation of A with B along an ideal J with respect to f (denoted by A ⋈fJ). Weakly S-primary ideals of the trivial ring extension are also characterized.
交换环弱s -原初理想的一些结果
设R是一个具有恒等的交换环,并且S≠R是一个乘法子集。如果存在一个S∈S,使得对于所有a, b∈R,如果0≠ab∈P,则sa∈P或sb∈√P,则定义R与S不相交的固有理想P为弱S-初等理想P。我们证明了弱s -初等理想具有许多类似于弱初等理想的性质,并研究了A与B沿理想J关于f(记为A fJ)的合并的弱s -初等理想的形式。对平凡环扩展的弱s初等理想也进行了刻画。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信