Computing complex functions using factorization in unipolar stochastic logic

Yin Liu, K. Parhi
{"title":"Computing complex functions using factorization in unipolar stochastic logic","authors":"Yin Liu, K. Parhi","doi":"10.1145/2902961.2902999","DOIUrl":null,"url":null,"abstract":"This paper addresses computing complex functions using unipolar stochastic logic. Stochastic computing requires simple logic gates and is inherently fault-tolerant. Thus, these structures are well suited for nanoscale CMOS technologies. Implementations of complex functions cost extremely low hardware complexity compared to traditional two's complement implementation. In this paper an approach based on polynomial factorization is proposed to compute functions in unipolar stochastic logic. In this approach, functions are expressed using polynomials, which are derived from Taylor expansion or Lagrange interpolation. Polynomials are implemented in stochastic logic by using factorization. Experimental results in terms of accuracy and hardware complexity are presented to compare the proposed designs of complex functions with previous implementations using Bernstein polynomials.","PeriodicalId":407054,"journal":{"name":"2016 International Great Lakes Symposium on VLSI (GLSVLSI)","volume":"186 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 International Great Lakes Symposium on VLSI (GLSVLSI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2902961.2902999","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

This paper addresses computing complex functions using unipolar stochastic logic. Stochastic computing requires simple logic gates and is inherently fault-tolerant. Thus, these structures are well suited for nanoscale CMOS technologies. Implementations of complex functions cost extremely low hardware complexity compared to traditional two's complement implementation. In this paper an approach based on polynomial factorization is proposed to compute functions in unipolar stochastic logic. In this approach, functions are expressed using polynomials, which are derived from Taylor expansion or Lagrange interpolation. Polynomials are implemented in stochastic logic by using factorization. Experimental results in terms of accuracy and hardware complexity are presented to compare the proposed designs of complex functions with previous implementations using Bernstein polynomials.
用单极随机逻辑分解计算复函数
本文讨论了用单极随机逻辑计算复杂函数。随机计算需要简单的逻辑门,并且具有固有的容错性。因此,这些结构非常适合纳米级CMOS技术。与传统的两个互补实现相比,复杂功能的实现花费的硬件复杂性极低。本文提出了一种基于多项式分解的方法来计算单极随机逻辑中的函数。在这种方法中,函数是用多项式来表示的,而多项式是由泰勒展开或拉格朗日插值得来的。在随机逻辑中,多项式是通过因式分解实现的。在精度和硬件复杂性方面给出了实验结果,将所提出的复杂函数设计与以前使用伯恩斯坦多项式的实现进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信