AMG Preconditioners based on Parallel Hybrid Coarsening and Multi-objective Graph Matching

P. D'Ambra, Fabio Durastante, S. Ferdous, S. Filippone, M. Halappanavar, A. Pothen
{"title":"AMG Preconditioners based on Parallel Hybrid Coarsening and Multi-objective Graph Matching","authors":"P. D'Ambra, Fabio Durastante, S. Ferdous, S. Filippone, M. Halappanavar, A. Pothen","doi":"10.1109/PDP59025.2023.00017","DOIUrl":null,"url":null,"abstract":"We describe preliminary results from a multi-objective graph matching algorithm, in the coarsening step of an aggregation-based Algebraic MultiGrid (AMG) preconditioner, for solving large and sparse linear systems of equations on high-end parallel computers. We have two objectives. First, we wish to improve the convergence behavior of the AMG method when applied to highly anisotropic problems. Second, we wish to extend the parallel package PSCToolkit to exploit multi-threaded parallelism at the node level on multi-core processors. Our matching proposal balances the need to simultaneously compute high weights and large cardinalities by a new formulation of the weighted matching problem combining both these objectives using a parameter $\\lambda$. We compute the matching by a parallel $2/3-\\varepsilon$-approximation algorithm for maximum weight matchings. Results with the new matching algorithm show that for a suitable choice of the parameter $\\lambda$ we compute effective preconditioners in the presence of anisotropy, i.e., smaller solve times, setup times, iterations counts, and operator complexity.","PeriodicalId":153500,"journal":{"name":"2023 31st Euromicro International Conference on Parallel, Distributed and Network-Based Processing (PDP)","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 31st Euromicro International Conference on Parallel, Distributed and Network-Based Processing (PDP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PDP59025.2023.00017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We describe preliminary results from a multi-objective graph matching algorithm, in the coarsening step of an aggregation-based Algebraic MultiGrid (AMG) preconditioner, for solving large and sparse linear systems of equations on high-end parallel computers. We have two objectives. First, we wish to improve the convergence behavior of the AMG method when applied to highly anisotropic problems. Second, we wish to extend the parallel package PSCToolkit to exploit multi-threaded parallelism at the node level on multi-core processors. Our matching proposal balances the need to simultaneously compute high weights and large cardinalities by a new formulation of the weighted matching problem combining both these objectives using a parameter $\lambda$. We compute the matching by a parallel $2/3-\varepsilon$-approximation algorithm for maximum weight matchings. Results with the new matching algorithm show that for a suitable choice of the parameter $\lambda$ we compute effective preconditioners in the presence of anisotropy, i.e., smaller solve times, setup times, iterations counts, and operator complexity.
基于并行混合粗化和多目标图匹配的AMG预处理
我们描述了一种多目标图匹配算法的初步结果,在基于聚合的代数多网格(AMG)预条件的粗化步骤中,用于在高端并行计算机上求解大型稀疏线性方程组。我们有两个目标。首先,我们希望改进AMG方法在处理高度各向异性问题时的收敛性。其次,我们希望扩展并行包PSCToolkit,以便在多核处理器的节点级别上利用多线程并行性。我们的匹配建议通过使用参数$\lambda$结合这两个目标的加权匹配问题的新公式来平衡同时计算高权重和大基数的需求。我们通过一个平行的$2/3-\varepsilon$ -近似算法来计算最大权重匹配。新匹配算法的结果表明,对于参数$\lambda$的合适选择,我们在各向异性存在的情况下计算出有效的预调节器,即较小的求解时间、设置时间、迭代次数和算子复杂度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信