Predicting location semantics combining active and passive sensing with environment-independent classifier

Masaya Tachikawa, T. Maekawa, Y. Matsushita
{"title":"Predicting location semantics combining active and passive sensing with environment-independent classifier","authors":"Masaya Tachikawa, T. Maekawa, Y. Matsushita","doi":"10.1145/2971648.2971684","DOIUrl":null,"url":null,"abstract":"This paper presents a method for estimating a user's indoor location without using training data collected by the user in his/her environment. Specifically, we attempt to predict the user's location semantics, i.e., location classes such as restroom and meeting room. While indoor location information can be used in many real-world services, e.g., context-aware systems, lifelogging, and monitoring the elderly, estimating the location information requires training data collected in an environment of interest. In this study, we combine passive sensing and active sound probing to capture and learn inherent sensor data features for each location class using labeled training data collected in other environments. In addition, this study modifies the random forest algorithm to effectively extract inherent sensor data features for each location class. Our evaluation showed that our method achieved about 85% accuracy without using training data collected in test environments.","PeriodicalId":303792,"journal":{"name":"Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing","volume":"217 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2971648.2971684","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

Abstract

This paper presents a method for estimating a user's indoor location without using training data collected by the user in his/her environment. Specifically, we attempt to predict the user's location semantics, i.e., location classes such as restroom and meeting room. While indoor location information can be used in many real-world services, e.g., context-aware systems, lifelogging, and monitoring the elderly, estimating the location information requires training data collected in an environment of interest. In this study, we combine passive sensing and active sound probing to capture and learn inherent sensor data features for each location class using labeled training data collected in other environments. In addition, this study modifies the random forest algorithm to effectively extract inherent sensor data features for each location class. Our evaluation showed that our method achieved about 85% accuracy without using training data collected in test environments.
结合主动和被动感知与环境无关分类器的位置语义预测
本文提出了一种不使用用户在其环境中收集的训练数据来估计用户室内位置的方法。具体来说,我们试图预测用户的位置语义,即洗手间和会议室等位置类。虽然室内位置信息可以用于许多现实世界的服务,例如,上下文感知系统,生活记录和监测老年人,但估计位置信息需要在感兴趣的环境中收集训练数据。在这项研究中,我们结合了被动感知和主动声音探测,利用在其他环境中收集的标记训练数据,捕捉和学习每个位置类别的固有传感器数据特征。此外,本文对随机森林算法进行了改进,有效地提取了每个位置类别的传感器数据的固有特征。我们的评估表明,我们的方法在不使用在测试环境中收集的训练数据的情况下达到了约85%的准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信