The Analysis of EEG Spectrogram Image for Brainwave Balancing Application Using ANN

M. Mustafa, M. Taib, Z. H. Murat, N. Sulaiman, S. A. M. Aris
{"title":"The Analysis of EEG Spectrogram Image for Brainwave Balancing Application Using ANN","authors":"M. Mustafa, M. Taib, Z. H. Murat, N. Sulaiman, S. A. M. Aris","doi":"10.1109/UKSIM.2011.22","DOIUrl":null,"url":null,"abstract":"The purpose of this paper is to analysis EEG spectrogram image using Artificial Neural Network (ANN) for brainwave balancing application. Time-frequency approach or spectrogram image processing technique is used to analyze EEG signals. The Gray Level Co-occurrence Matrix (GLCM) texture feature was extracted from spectrogram image and passed through Principal components analysis (PCA) to reduce the feature dimension. The experimental result shows that ANN was able to analysis EEG spectrogram images with an optimized model in training by varying neurons in the hidden layer, learning rate and momentum.","PeriodicalId":161995,"journal":{"name":"2011 UkSim 13th International Conference on Computer Modelling and Simulation","volume":"79 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 UkSim 13th International Conference on Computer Modelling and Simulation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/UKSIM.2011.22","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

Abstract

The purpose of this paper is to analysis EEG spectrogram image using Artificial Neural Network (ANN) for brainwave balancing application. Time-frequency approach or spectrogram image processing technique is used to analyze EEG signals. The Gray Level Co-occurrence Matrix (GLCM) texture feature was extracted from spectrogram image and passed through Principal components analysis (PCA) to reduce the feature dimension. The experimental result shows that ANN was able to analysis EEG spectrogram images with an optimized model in training by varying neurons in the hidden layer, learning rate and momentum.
脑电图分析在脑波平衡中的应用
本文的目的是利用人工神经网络(ANN)分析脑电波图图像,并将其应用于脑波平衡。采用时频法或谱图图像处理技术对脑电信号进行分析。从光谱图图像中提取灰度共生矩阵(GLCM)纹理特征,并通过主成分分析(PCA)进行特征降维。实验结果表明,在训练过程中,通过改变隐层神经元、学习率和动量,人工神经网络能够以优化的模型分析脑电谱图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信