Evaluation of the feedforward neural network covariance matrix error

S. Abid, F. Fnaiech, M. Najim
{"title":"Evaluation of the feedforward neural network covariance matrix error","authors":"S. Abid, F. Fnaiech, M. Najim","doi":"10.1109/ICASSP.2000.860151","DOIUrl":null,"url":null,"abstract":"This paper presents a theoretical approach for the evaluation of a feedforward neural network covariance output error matrix. It is shown how the input signals errors and the different weights errors are linked together and spread over the neural network to form the output covariance matrix error which could may be used to determine an error bound. The formulas of the output covariance matrix error is derived arising the sensitivity of the additive weight perturbations or input perturbations. The analytical formulas is validated via simulation of a function approximation example showing that the theoretical result is in agreement with simulation result.","PeriodicalId":164817,"journal":{"name":"2000 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No.00CH37100)","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2000 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No.00CH37100)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2000.860151","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

This paper presents a theoretical approach for the evaluation of a feedforward neural network covariance output error matrix. It is shown how the input signals errors and the different weights errors are linked together and spread over the neural network to form the output covariance matrix error which could may be used to determine an error bound. The formulas of the output covariance matrix error is derived arising the sensitivity of the additive weight perturbations or input perturbations. The analytical formulas is validated via simulation of a function approximation example showing that the theoretical result is in agreement with simulation result.
前馈神经网络协方差矩阵误差的评价
本文提出了一种评估前馈神经网络协方差输出误差矩阵的理论方法。说明了输入信号误差和不同权重误差是如何联系在一起,并在神经网络中扩散,形成输出协方差矩阵误差,该矩阵误差可用于确定误差界。导出了考虑加性权扰动和输入扰动敏感性的输出协方差矩阵误差计算公式。通过一个函数逼近算例的仿真验证了解析公式的正确性,理论结果与仿真结果吻合较好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信