Model fusion for inertial-based personal dead reckoning systems

Michal Meina, Adam Krasuski, Krzysztof Rykaczewski
{"title":"Model fusion for inertial-based personal dead reckoning systems","authors":"Michal Meina, Adam Krasuski, Krzysztof Rykaczewski","doi":"10.1109/SAS.2015.7133658","DOIUrl":null,"url":null,"abstract":"This paper introduces a model fusion approach that improves the effectiveness of Personal Dead Reckoning Systems that exploits foot-mounted Inertial Measurement Units. Our solution estimates a sensor orientation by exploiting the Madgwick's algorithm integrated with popular Kalman-based solution. This way, attitude and heading correction is not based on the Zero-Velocity phase assumption which introduces significant error. The experiments conducted on ground-truth data shows, that the proposed approach outperforms state-of-the-art solution by reducing systematic and modelling errors and also provides better heading estimation.","PeriodicalId":384041,"journal":{"name":"2015 IEEE Sensors Applications Symposium (SAS)","volume":"215 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE Sensors Applications Symposium (SAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAS.2015.7133658","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

This paper introduces a model fusion approach that improves the effectiveness of Personal Dead Reckoning Systems that exploits foot-mounted Inertial Measurement Units. Our solution estimates a sensor orientation by exploiting the Madgwick's algorithm integrated with popular Kalman-based solution. This way, attitude and heading correction is not based on the Zero-Velocity phase assumption which introduces significant error. The experiments conducted on ground-truth data shows, that the proposed approach outperforms state-of-the-art solution by reducing systematic and modelling errors and also provides better heading estimation.
基于惯性的个人航位推算系统的模型融合
本文介绍了一种利用足载惯性测量单元提高个人航位推算系统有效性的模型融合方法。我们的解决方案通过利用Madgwick算法与流行的基于卡尔曼的解决方案相结合来估计传感器的方向。这样,姿态和航向的修正就不需要基于零速度相位假设,这就引入了很大的误差。在地面真实数据上进行的实验表明,所提出的方法通过减少系统和建模误差来优于最先进的解决方案,并且还提供了更好的航向估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信