Michal Meina, Adam Krasuski, Krzysztof Rykaczewski
{"title":"Model fusion for inertial-based personal dead reckoning systems","authors":"Michal Meina, Adam Krasuski, Krzysztof Rykaczewski","doi":"10.1109/SAS.2015.7133658","DOIUrl":null,"url":null,"abstract":"This paper introduces a model fusion approach that improves the effectiveness of Personal Dead Reckoning Systems that exploits foot-mounted Inertial Measurement Units. Our solution estimates a sensor orientation by exploiting the Madgwick's algorithm integrated with popular Kalman-based solution. This way, attitude and heading correction is not based on the Zero-Velocity phase assumption which introduces significant error. The experiments conducted on ground-truth data shows, that the proposed approach outperforms state-of-the-art solution by reducing systematic and modelling errors and also provides better heading estimation.","PeriodicalId":384041,"journal":{"name":"2015 IEEE Sensors Applications Symposium (SAS)","volume":"215 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE Sensors Applications Symposium (SAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAS.2015.7133658","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
This paper introduces a model fusion approach that improves the effectiveness of Personal Dead Reckoning Systems that exploits foot-mounted Inertial Measurement Units. Our solution estimates a sensor orientation by exploiting the Madgwick's algorithm integrated with popular Kalman-based solution. This way, attitude and heading correction is not based on the Zero-Velocity phase assumption which introduces significant error. The experiments conducted on ground-truth data shows, that the proposed approach outperforms state-of-the-art solution by reducing systematic and modelling errors and also provides better heading estimation.