Entropic Graphs for Registration

Huzefa Neemuchwala, A. Hero
{"title":"Entropic Graphs for Registration","authors":"Huzefa Neemuchwala, A. Hero","doi":"10.1201/9781420026986.ch6","DOIUrl":null,"url":null,"abstract":"In many applications, fusion of images acquired via two or more sensors requires image alignment to an identical pose, a process called image registration. Image registration methods select a sequence of transformations to maximize an image similarity measure. Recently a new class of entropic-graph similarity measures was introduced for image registration, feature clustering and classification. This chapter provides an overview of entropic graphs in image registration and demonstrates their performance advantages relative to conventional similarity measures. In this chapter we introduce : techniques to extend","PeriodicalId":196523,"journal":{"name":"Multi-Sensor Image Fusion and Its Applications","volume":"86 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Multi-Sensor Image Fusion and Its Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1201/9781420026986.ch6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

In many applications, fusion of images acquired via two or more sensors requires image alignment to an identical pose, a process called image registration. Image registration methods select a sequence of transformations to maximize an image similarity measure. Recently a new class of entropic-graph similarity measures was introduced for image registration, feature clustering and classification. This chapter provides an overview of entropic graphs in image registration and demonstrates their performance advantages relative to conventional similarity measures. In this chapter we introduce : techniques to extend
登记用熵图
在许多应用中,通过两个或多个传感器获取的图像融合需要将图像对齐到相同的姿势,这一过程称为图像配准。图像配准方法选择一系列变换来最大化图像相似性度量。近年来,一类新的熵图相似度量被引入到图像配准、特征聚类和分类中。本章概述了图像配准中的熵图,并展示了它们相对于传统相似度量的性能优势。在本章中,我们将介绍:扩展技术
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信