Image Fusion with Local Spectral Consistency and Dynamic Gradient Sparsity

Cheng Chen, Yeqing Li, W. Liu, Junzhou Huang
{"title":"Image Fusion with Local Spectral Consistency and Dynamic Gradient Sparsity","authors":"Cheng Chen, Yeqing Li, W. Liu, Junzhou Huang","doi":"10.1109/CVPR.2014.347","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a novel method for image fusion from a high resolution panchromatic image and a low resolution multispectral image at the same geographical location. Different from previous methods, we do not make any assumption about the upsampled multispectral image, but only assume that the fused image after downsampling should be close to the original multispectral image. This is a severely ill-posed problem and a dynamic gradient sparsity penalty is thus proposed for regularization. Incorporating the intra- correlations of different bands, this penalty can effectively exploit the prior information (e.g. sharp boundaries) from the panchromatic image. A new convex optimization algorithm is proposed to efficiently solve this problem. Extensive experiments on four multispectral datasets demonstrate that the proposed method significantly outperforms the state-of-the-arts in terms of both spatial and spectral qualities.","PeriodicalId":319578,"journal":{"name":"2014 IEEE Conference on Computer Vision and Pattern Recognition","volume":"180 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"127","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Conference on Computer Vision and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2014.347","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 127

Abstract

In this paper, we propose a novel method for image fusion from a high resolution panchromatic image and a low resolution multispectral image at the same geographical location. Different from previous methods, we do not make any assumption about the upsampled multispectral image, but only assume that the fused image after downsampling should be close to the original multispectral image. This is a severely ill-posed problem and a dynamic gradient sparsity penalty is thus proposed for regularization. Incorporating the intra- correlations of different bands, this penalty can effectively exploit the prior information (e.g. sharp boundaries) from the panchromatic image. A new convex optimization algorithm is proposed to efficiently solve this problem. Extensive experiments on four multispectral datasets demonstrate that the proposed method significantly outperforms the state-of-the-arts in terms of both spatial and spectral qualities.
基于局部光谱一致性和动态梯度稀疏性的图像融合
本文提出了一种基于同一地理位置的高分辨率全色图像和低分辨率多光谱图像融合的新方法。与以往的方法不同,我们对上采样后的多光谱图像不做任何假设,只假设下采样后的融合图像与原始多光谱图像接近。这是一个严重不适定的问题,因此提出了一个动态梯度稀疏性惩罚来正则化。该惩罚结合了不同波段的内相关性,可以有效地利用全色图像的先验信息(如清晰的边界)。为了有效地解决这一问题,提出了一种新的凸优化算法。在四个多光谱数据集上进行的大量实验表明,该方法在空间和光谱质量方面都明显优于目前的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信