{"title":"Geometric Programming Based Resource Allocation for 5G High-Speed Mobile Networks","authors":"Shaoyi Xu, Tianhang Fu","doi":"10.4018/978-1-5225-1712-2.CH009","DOIUrl":null,"url":null,"abstract":"The high-speed railway (HSR) is a typical application case in 5G systems. Mobile relay stations (MRSs) which are mounted in a high-speed train (HST) is popular system architecture for high-speed mobile communications. However, sharing spectrums between the macro cell and the MRS cell, interference exists in this hybrid system. In this chapter, we investigate the downlink of a multi-cellular decode and forward (DF) relayed orthogonal frequency division multiple access (OFDMA) system and formulate the problem to maximize the system sum rate of all cells subject to a total power constraint and a new proposed time delay constraint. An effective resource allocation scheme combined by greedy sub-carriers allocation and geometric programming (GP) based power allocation algorithm is proposed to optimize subcarrier allocation and power allocation. Numerical experiments verify that the proposed resource allocation scheme outperforms the other traditional approaches and the necessity of introducing the time delay constraint.","PeriodicalId":298363,"journal":{"name":"Research Anthology on Developing and Optimizing 5G Networks and the Impact on Society","volume":"79 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research Anthology on Developing and Optimizing 5G Networks and the Impact on Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/978-1-5225-1712-2.CH009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The high-speed railway (HSR) is a typical application case in 5G systems. Mobile relay stations (MRSs) which are mounted in a high-speed train (HST) is popular system architecture for high-speed mobile communications. However, sharing spectrums between the macro cell and the MRS cell, interference exists in this hybrid system. In this chapter, we investigate the downlink of a multi-cellular decode and forward (DF) relayed orthogonal frequency division multiple access (OFDMA) system and formulate the problem to maximize the system sum rate of all cells subject to a total power constraint and a new proposed time delay constraint. An effective resource allocation scheme combined by greedy sub-carriers allocation and geometric programming (GP) based power allocation algorithm is proposed to optimize subcarrier allocation and power allocation. Numerical experiments verify that the proposed resource allocation scheme outperforms the other traditional approaches and the necessity of introducing the time delay constraint.