Implementation of ECG Classification Xilinx System Generator

Omar N. Saadi, Zena N. Abdulkader, J. Abdul-Jabbar
{"title":"Implementation of ECG Classification Xilinx System Generator","authors":"Omar N. Saadi, Zena N. Abdulkader, J. Abdul-Jabbar","doi":"10.1109/ICECCPCE46549.2019.203782","DOIUrl":null,"url":null,"abstract":"this paper presents a method to implement an Electrocardiogram (ECG)-neuro classifier on FPGA kit using Xilinx System Generator blocks. An approximate linear phase bi-reciprocal lattice wave digital filter (BLWDF) is used for QRS complex extraction. The output of the BLWDF is fed into a neuro classifier system. Various ECG signals from the European ST-T and QT databases are then classified into four classes of human heart diseases: Normal, Right Bundle Branch Block (RBBB), Left Ventricular Hypertrophy (LVH), Left Bundle Branch Block (LBBB). Neural network training process is accomplished using Matlab toolbox to obtain the weights and bias values. The classifier is then implemented on a Spartan6 Xilinx Field Programmable Gate Array (FPGA) device. A feed forward neural network with two layers and four neurons with an activation function of the type \"tan-sigmoid\" is modeled using Xilinx System Generator blocks. The models are then translated into Very High Speed IC Hardware Description Language (VHDL) to measure the usage percentage of the chip resources and to calculate the maximum operating frequency.","PeriodicalId":343983,"journal":{"name":"2019 2nd International Conference on Electrical, Communication, Computer, Power and Control Engineering (ICECCPCE)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 2nd International Conference on Electrical, Communication, Computer, Power and Control Engineering (ICECCPCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICECCPCE46549.2019.203782","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

this paper presents a method to implement an Electrocardiogram (ECG)-neuro classifier on FPGA kit using Xilinx System Generator blocks. An approximate linear phase bi-reciprocal lattice wave digital filter (BLWDF) is used for QRS complex extraction. The output of the BLWDF is fed into a neuro classifier system. Various ECG signals from the European ST-T and QT databases are then classified into four classes of human heart diseases: Normal, Right Bundle Branch Block (RBBB), Left Ventricular Hypertrophy (LVH), Left Bundle Branch Block (LBBB). Neural network training process is accomplished using Matlab toolbox to obtain the weights and bias values. The classifier is then implemented on a Spartan6 Xilinx Field Programmable Gate Array (FPGA) device. A feed forward neural network with two layers and four neurons with an activation function of the type "tan-sigmoid" is modeled using Xilinx System Generator blocks. The models are then translated into Very High Speed IC Hardware Description Language (VHDL) to measure the usage percentage of the chip resources and to calculate the maximum operating frequency.
心电分类Xilinx系统生成器的实现
本文提出了一种利用Xilinx System Generator模块在FPGA上实现心电图神经分类器的方法。采用近似线性相位双倒格波数字滤波器(BLWDF)提取QRS复合体。BLWDF的输出被输入到神经分类器系统中。来自欧洲ST-T和QT数据库的各种ECG信号随后被分类为四类人类心脏病:正常、右束支传导阻滞(RBBB)、左室肥厚(LVH)、左束支传导阻滞(LBBB)。神经网络的训练过程是利用Matlab工具箱完成的,获取权重和偏置值。然后在Spartan6 Xilinx现场可编程门阵列(FPGA)设备上实现分类器。使用Xilinx System Generator模块对具有“tan-sigmoid”类型激活函数的两层和四个神经元的前馈神经网络进行建模。然后将这些模型转换成超高速IC硬件描述语言(VHDL)来测量芯片资源的使用百分比并计算最大工作频率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信