Recent Progress of Named Entity Recognition over the Most Popular Datasets

M. Albared, Marc Gallofré Ocaña, Abdullah S. Ghareb, Tareq Al-Moslmi
{"title":"Recent Progress of Named Entity Recognition over the Most Popular Datasets","authors":"M. Albared, Marc Gallofré Ocaña, Abdullah S. Ghareb, Tareq Al-Moslmi","doi":"10.1109/ICOICE48418.2019.9035170","DOIUrl":null,"url":null,"abstract":"Named entity recognition (NER) has been considered as an initial step for many applications and tasks such as information retrieval and extraction, question answering, topic modelling, open information extraction, knowledge graph construction, and so forth. Therefore, NER has been receiving increasing attention in the research community. Despite the abundant availability of previous studies on NER, few of them have been applied for more than one dataset. Hence, one system might outperform other systems in one dataset and fail to do in another one. The previous NER surveys have mostly focused on reporting the NER systems without providing a clear comparison for all systems proposed for each dataset. In this paper, we will track the NER performance progress for the most commonly used datasets in NER and report the most recent best systems that have been proposed for each dataset during the last few years.","PeriodicalId":109414,"journal":{"name":"2019 First International Conference of Intelligent Computing and Engineering (ICOICE)","volume":"74 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 First International Conference of Intelligent Computing and Engineering (ICOICE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICOICE48418.2019.9035170","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Named entity recognition (NER) has been considered as an initial step for many applications and tasks such as information retrieval and extraction, question answering, topic modelling, open information extraction, knowledge graph construction, and so forth. Therefore, NER has been receiving increasing attention in the research community. Despite the abundant availability of previous studies on NER, few of them have been applied for more than one dataset. Hence, one system might outperform other systems in one dataset and fail to do in another one. The previous NER surveys have mostly focused on reporting the NER systems without providing a clear comparison for all systems proposed for each dataset. In this paper, we will track the NER performance progress for the most commonly used datasets in NER and report the most recent best systems that have been proposed for each dataset during the last few years.
基于最流行数据集的命名实体识别研究进展
命名实体识别(NER)被认为是信息检索与提取、问题回答、主题建模、开放信息提取、知识图谱构建等许多应用和任务的初始步骤。因此,NER越来越受到研究界的关注。尽管以往有大量关于NER的研究,但很少有研究应用于多个数据集。因此,一个系统可能在一个数据集中胜过其他系统,而在另一个数据集中表现不佳。以前的NER调查主要侧重于报告NER系统,而没有为每个数据集提出的所有系统提供清晰的比较。在本文中,我们将跟踪NER中最常用数据集的性能进展,并报告在过去几年中为每个数据集提出的最新最佳系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信