Scrabble

Jason Koh, Bharathan Balaji, Dhiman Sengupta, Julian McAuley, Rajesh E. Gupta, Yuvraj Agarwal
{"title":"Scrabble","authors":"Jason Koh, Bharathan Balaji, Dhiman Sengupta, Julian McAuley, Rajesh E. Gupta, Yuvraj Agarwal","doi":"10.1145/3276774.3276795","DOIUrl":null,"url":null,"abstract":"Interoperability in the Internet of Things relies on a common data model that captures the necessary semantics for vendor independent application development and data exchange. However, traditional systems such as those in building management are vertically integrated and do not use a standard schema. A typical building can consist of thousands of data points. Third party vendors who seek to deploy applications like fault diagnosis need to manually map the building information into a common schema. This mapping process requires deep domain expertise and a detailed understanding of intricacies of each building's system. Our framework - Scrabble - reduces the mapping effort significantly by using a multi-stage active learning mechanism that exploits the structure present in a standard schema and learns from buildings that have already been mapped to the schema. Scrabble uses conditional random fields with transfer learning to represent unstructured building information in a reusable intermediate representation. This reusable representation is mapped to the schema using a multilayer perceptron. Our novel semantic model based active learning mechanism requires only minimal input from domain experts to interpret esoteric, idiosyncratic data points. We have evaluated Scrabble on five buildings with thousands of different entities and our method outperforms prior work by 59%/162% higher Accuracy/Macro-averaged-F1 in a building when 10 examples are provided by an expert in both cases. Scrabble achieves 99% Accuracy with 100--160 examples for buildings with thousands of points while the other baselines cannot.","PeriodicalId":294697,"journal":{"name":"Proceedings of the 5th Conference on Systems for Built Environments","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 5th Conference on Systems for Built Environments","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3276774.3276795","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 30

Abstract

Interoperability in the Internet of Things relies on a common data model that captures the necessary semantics for vendor independent application development and data exchange. However, traditional systems such as those in building management are vertically integrated and do not use a standard schema. A typical building can consist of thousands of data points. Third party vendors who seek to deploy applications like fault diagnosis need to manually map the building information into a common schema. This mapping process requires deep domain expertise and a detailed understanding of intricacies of each building's system. Our framework - Scrabble - reduces the mapping effort significantly by using a multi-stage active learning mechanism that exploits the structure present in a standard schema and learns from buildings that have already been mapped to the schema. Scrabble uses conditional random fields with transfer learning to represent unstructured building information in a reusable intermediate representation. This reusable representation is mapped to the schema using a multilayer perceptron. Our novel semantic model based active learning mechanism requires only minimal input from domain experts to interpret esoteric, idiosyncratic data points. We have evaluated Scrabble on five buildings with thousands of different entities and our method outperforms prior work by 59%/162% higher Accuracy/Macro-averaged-F1 in a building when 10 examples are provided by an expert in both cases. Scrabble achieves 99% Accuracy with 100--160 examples for buildings with thousands of points while the other baselines cannot.
拼字游戏
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信