Identification of New Epilepsy Syndromes using Machine Learning

Carlos R. Arias, R. Durón, A. Delgado-Escueta
{"title":"Identification of New Epilepsy Syndromes using Machine Learning","authors":"Carlos R. Arias, R. Durón, A. Delgado-Escueta","doi":"10.1109/CONCAPANXXXIX47272.2019.8977043","DOIUrl":null,"url":null,"abstract":"Ubiquity of machine learning is a reality in the current world: machine learning is everywhere. Neurology is no exception. This paper presents an application of machine learning algorithms for the analysis of multi-national epilepsy clinical data. The initial purpose of the analysis was to find patters in the data, however the analysis resulted in the identification of two new epilepsy syndromes: Borderline Absence Syndrome and Childhood Myoclonic Epilepsy with Absence. It was confirmed that decision tree is an appropriate tool to present the results of supervised machine learning, helping the physicians make sense of the model and trace it back to the data.","PeriodicalId":272652,"journal":{"name":"2019 IEEE 39th Central America and Panama Convention (CONCAPAN XXXIX)","volume":"163 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 39th Central America and Panama Convention (CONCAPAN XXXIX)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CONCAPANXXXIX47272.2019.8977043","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Ubiquity of machine learning is a reality in the current world: machine learning is everywhere. Neurology is no exception. This paper presents an application of machine learning algorithms for the analysis of multi-national epilepsy clinical data. The initial purpose of the analysis was to find patters in the data, however the analysis resulted in the identification of two new epilepsy syndromes: Borderline Absence Syndrome and Childhood Myoclonic Epilepsy with Absence. It was confirmed that decision tree is an appropriate tool to present the results of supervised machine learning, helping the physicians make sense of the model and trace it back to the data.
使用机器学习识别新的癫痫综合征
机器学习无处不在是当今世界的现实:机器学习无处不在。神经学也不例外。本文介绍了机器学习算法在多国癫痫临床数据分析中的应用。分析的最初目的是寻找数据中的模式,然而分析结果确定了两种新的癫痫综合征:边缘性缺失综合征和儿童肌阵挛性缺失癫痫。研究证实,决策树是一种合适的工具,可以展示监督机器学习的结果,帮助医生理解模型并将其追溯到数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信