K. Sadikov, C. Yuan, S. Mehrabi-Kalajahi, M. Varfolomeev, S. Talipov
{"title":"A New, Fast, and Efficient Method for Evaluating the Influence of Catalysts on In-Situ Combustion Process for Heavy Oil Recovery","authors":"K. Sadikov, C. Yuan, S. Mehrabi-Kalajahi, M. Varfolomeev, S. Talipov","doi":"10.2118/193758-MS","DOIUrl":null,"url":null,"abstract":"\n The use of catalysts has been considered as an effective method to improve the efficiency of in-situ combustion (ISC) process for heavy oil recovery. In this work, we present a new small-scale combustion tube to quickly and effectively evaluate the effect of catalysts on ISC process. Different oil-soluble metal-based catalysts were evaluated for ISC process for heavy oil recovery using this small-scale combustion tube. These experiments can provide the information about the stability of combustion front, oil recovery, and in-situ oil upgrading information.\n Using this device, ISC process was successfully simulated. It turned out that the ISC process itself can effectively improve heavy oil recovery up to about 70 % and simultaneously achieve an in-situ oil upgrading evidenced by a significant viscosity reduction and an API increase. The presence of oil-soluble iron-based, nickel-based and copper-based catalysts can achieve a further oil upgrading to the level of medium oil from heavy oil with a more significant reduction in the content of resins and asphaltenes. However, the in-situ oil upgrading in ISC process yielded by iron-based and nickel-based catalysts at the expense of an unstable combustion front and a lower oil recovery (about 10 % lower than that without catalysts). The presence of copper-based catalysts not only achieved a further oil upgrading, but also improved the stability of combustion front and yielded a higher oil recovery (about 5 % higher than that without catalysts).\n The obtained results indicated that oil-soluble copper-based catalyst has a great potential for improving the efficiency of ISC processes for heavy oil recovery. The new small-scale combustion tube was proven to have the ability for a fast and effective evaluation of the influence of catalysts on ISC processes.","PeriodicalId":137875,"journal":{"name":"Day 3 Wed, December 12, 2018","volume":"213 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 3 Wed, December 12, 2018","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/193758-MS","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7
Abstract
The use of catalysts has been considered as an effective method to improve the efficiency of in-situ combustion (ISC) process for heavy oil recovery. In this work, we present a new small-scale combustion tube to quickly and effectively evaluate the effect of catalysts on ISC process. Different oil-soluble metal-based catalysts were evaluated for ISC process for heavy oil recovery using this small-scale combustion tube. These experiments can provide the information about the stability of combustion front, oil recovery, and in-situ oil upgrading information.
Using this device, ISC process was successfully simulated. It turned out that the ISC process itself can effectively improve heavy oil recovery up to about 70 % and simultaneously achieve an in-situ oil upgrading evidenced by a significant viscosity reduction and an API increase. The presence of oil-soluble iron-based, nickel-based and copper-based catalysts can achieve a further oil upgrading to the level of medium oil from heavy oil with a more significant reduction in the content of resins and asphaltenes. However, the in-situ oil upgrading in ISC process yielded by iron-based and nickel-based catalysts at the expense of an unstable combustion front and a lower oil recovery (about 10 % lower than that without catalysts). The presence of copper-based catalysts not only achieved a further oil upgrading, but also improved the stability of combustion front and yielded a higher oil recovery (about 5 % higher than that without catalysts).
The obtained results indicated that oil-soluble copper-based catalyst has a great potential for improving the efficiency of ISC processes for heavy oil recovery. The new small-scale combustion tube was proven to have the ability for a fast and effective evaluation of the influence of catalysts on ISC processes.