An error correction model based on neural network for laser displacement sensor

丽丽 贯, 立群 柴, 强 李, 宇航 何, 道明 万
{"title":"An error correction model based on neural network for laser displacement sensor","authors":"丽丽 贯, 立群 柴, 强 李, 宇航 何, 道明 万","doi":"10.1117/12.2503948","DOIUrl":null,"url":null,"abstract":"Laser trigonometric displacement sensor has characteristics of high efficiency, non-contact and large-scale measurement range, when coupled with scanning system, it can be widely used in profile measurement of complex workpiece surface. But for large steep workpieces, the axis of incident light emitted from the sensor can’t be perpendicular to its surface, accuracy will be largely degraded by this inclination angle. Also, the relationship between error and influencing factors dominated by inclination angle is a nonlinear function. If the influence of measuring distances is taken into account, the relationship becomes a multivariate mapping. So an improved multi-layer BP neural network is proposed to compensate for errors. This paper uses the genetic algorithm to optimize the initialization parameters of the network, while using adaptive training method to optimize the convergence process and adjusting the learning rate, increasing the momentum item to avoid falling into local extreme points. Besides, the laser displacement sensor of Keyence LK-H020 is used to obtain the measurement data and the error was obtained by comparing with a grating ruler with a precision of 10 nm. Based on the simulation and experimental results, the method can reduce the error from 3.8 μm to 0.5 μm when inclination range is from 0° to 8°, and from 7μm to 3 μm when the angle is from 0° to 50°. The results prove effectiveness, generalization and robustness of the algorithm.","PeriodicalId":189666,"journal":{"name":"Global Intelligence Industry Conference (GIIC 2018)","volume":"33 13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Intelligence Industry Conference (GIIC 2018)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2503948","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Laser trigonometric displacement sensor has characteristics of high efficiency, non-contact and large-scale measurement range, when coupled with scanning system, it can be widely used in profile measurement of complex workpiece surface. But for large steep workpieces, the axis of incident light emitted from the sensor can’t be perpendicular to its surface, accuracy will be largely degraded by this inclination angle. Also, the relationship between error and influencing factors dominated by inclination angle is a nonlinear function. If the influence of measuring distances is taken into account, the relationship becomes a multivariate mapping. So an improved multi-layer BP neural network is proposed to compensate for errors. This paper uses the genetic algorithm to optimize the initialization parameters of the network, while using adaptive training method to optimize the convergence process and adjusting the learning rate, increasing the momentum item to avoid falling into local extreme points. Besides, the laser displacement sensor of Keyence LK-H020 is used to obtain the measurement data and the error was obtained by comparing with a grating ruler with a precision of 10 nm. Based on the simulation and experimental results, the method can reduce the error from 3.8 μm to 0.5 μm when inclination range is from 0° to 8°, and from 7μm to 3 μm when the angle is from 0° to 50°. The results prove effectiveness, generalization and robustness of the algorithm.
基于神经网络的激光位移传感器误差校正模型
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信