Fast Anomaly Detection in Micro Data Centers Using Machine Learning Techniques

Negin Piran Nanekaran, Mohammad Esmalifalak, M. Narimani
{"title":"Fast Anomaly Detection in Micro Data Centers Using Machine Learning Techniques","authors":"Negin Piran Nanekaran, Mohammad Esmalifalak, M. Narimani","doi":"10.1109/INDIN45582.2020.9442233","DOIUrl":null,"url":null,"abstract":"This paper proposes a new approach to fast detection of abnormal behaviour of cooling and IT systems in micro data centers (MDCs) based on machine learning (ML) techniques. Conventional protection of MDCs focuses on monitoring individual parameters such as temperature at different locations and when these parameters reaches certain high values, then alarm will be triggered. This paper employs ML techniques to extract normal and abnormal behaviour of the cooling and IT systems. Developed data acquisition system together with unsupervised learning methods quickly learns the physical dynamics of normal operation and is able to detect deviations from such behaviours. This provides an efficient way for not only producing health index for the MDC, but also a rich label logging system that will be used for the supervised learning methods. The effectiveness of the proposed detection technique is evaluated on a MDC placed at Computing Infrastructure Research Center (CIRC) in McMaster Innovation Park (MIP), McMaster University.","PeriodicalId":185948,"journal":{"name":"2020 IEEE 18th International Conference on Industrial Informatics (INDIN)","volume":"76 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 18th International Conference on Industrial Informatics (INDIN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INDIN45582.2020.9442233","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper proposes a new approach to fast detection of abnormal behaviour of cooling and IT systems in micro data centers (MDCs) based on machine learning (ML) techniques. Conventional protection of MDCs focuses on monitoring individual parameters such as temperature at different locations and when these parameters reaches certain high values, then alarm will be triggered. This paper employs ML techniques to extract normal and abnormal behaviour of the cooling and IT systems. Developed data acquisition system together with unsupervised learning methods quickly learns the physical dynamics of normal operation and is able to detect deviations from such behaviours. This provides an efficient way for not only producing health index for the MDC, but also a rich label logging system that will be used for the supervised learning methods. The effectiveness of the proposed detection technique is evaluated on a MDC placed at Computing Infrastructure Research Center (CIRC) in McMaster Innovation Park (MIP), McMaster University.
基于机器学习技术的微数据中心快速异常检测
本文提出了一种基于机器学习技术的微数据中心冷却和IT系统异常行为快速检测的新方法。传统的MDCs保护侧重于监测单个参数,如不同位置的温度,当这些参数达到一定的高值时,就会触发报警。本文采用机器学习技术提取冷却和IT系统的正常和异常行为。开发的数据采集系统与无监督学习方法一起快速学习正常操作的物理动态,并能够检测出这些行为的偏差。这不仅为MDC生成健康指数提供了一种有效的方法,而且还为监督学习方法提供了一个丰富的标签日志系统。在麦克马斯特大学麦克马斯特创新园(MIP)计算基础设施研究中心(CIRC)的MDC上评估了所提出的检测技术的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信