Design of Automatic Recycling Robot Based on YOLO Target Detection

Chuan Li, Manming Shu, Ling Du, Haoyue Tan, Lang Wei
{"title":"Design of Automatic Recycling Robot Based on YOLO Target Detection","authors":"Chuan Li, Manming Shu, Ling Du, Haoyue Tan, Lang Wei","doi":"10.1109/CACML55074.2022.00059","DOIUrl":null,"url":null,"abstract":"In order to achieve automatic item grasping and recovery, we propose a system design method based on YOLO v4 automatic recovery robot, using the higher computing power of Jetson Nano and STM32F103ZET6 computing units, processing image information to control the operation of the robot system, with six degrees of freedom PWM robot arm to accurately grasp the items. After system testing, the average item recognition rate exceeds 98.5%, and the recovery success rate exceeds 96%, truly achieving automatic search, grasp, recovery, and return end-to-end operation.","PeriodicalId":137505,"journal":{"name":"2022 Asia Conference on Algorithms, Computing and Machine Learning (CACML)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 Asia Conference on Algorithms, Computing and Machine Learning (CACML)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CACML55074.2022.00059","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In order to achieve automatic item grasping and recovery, we propose a system design method based on YOLO v4 automatic recovery robot, using the higher computing power of Jetson Nano and STM32F103ZET6 computing units, processing image information to control the operation of the robot system, with six degrees of freedom PWM robot arm to accurately grasp the items. After system testing, the average item recognition rate exceeds 98.5%, and the recovery success rate exceeds 96%, truly achieving automatic search, grasp, recovery, and return end-to-end operation.
基于YOLO目标检测的自动回收机器人设计
为了实现物品的自动抓取和回收,我们提出了一种基于YOLO v4自动回收机器人的系统设计方法,利用Jetson Nano和STM32F103ZET6计算单元的较高计算能力,处理图像信息来控制机器人系统的运行,用六自由度PWM机械臂精确抓取物品。经过系统测试,平均物品识别率超过98.5%,恢复成功率超过96%,真正实现自动搜索、抓取、恢复、返回端到端操作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信